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ABSTRACT 

This paper reports on an investigation of dynamic 
behavior of an electrostatic Vibration Energy Harvester 
(e-VEH) which uses gap-closing capacitive transducers 
and operates in a constant-charge mode. This work 
provides a deep insight into stability issues of a e-VEH 
investigating four dynamic modes, among which only 
one corresponds to a regular, stable and desirable 
operation mode needed for the energy conversion. The 
three other modes represent instable behavior. Each one 
corresponds to a particular range of external 
acceleration, and in none of these modes the e-VEH 
behaves similarly to an ideal constant-voltage biased 
transducer associated with a resonator. This paper 
describes a modeling experiment allowing a 
demonstration of the four operation modes, and proposes 
theoretical considerations for their quantitative 
description.  
 
1. INTRODUCTION  

One major limitation of electrostatic Vibration 
Energy Harvester (e-VEH) is the related (in)stability due 
to the presence of both mechanical and electrostatic 
forces. The present work addresses the problem of 
mechanical stability of the system “electrostatic 
transducer – mechanical resonator” in this particular 
context [1]. To date, many studies have been carried out, 
aiming to understand the dynamic behavior of a voltage 
biased electrostatic transducer associated with a 
mechanical resonator in applications like accelerometers, 
mechanical signal processing and oscillators. The main 
instability phenomenon related to dynamic and static 
pull-in has been deeply investigated for such systems 
[2][3]. However, in a constant-charge electrostatic 
harvester [4], the transducer operates in a more complex 
context:  

- when the capacitance of the transducer increases, 
the transducer is biased to a zero voltage;  

- when the capacitance of the transducer decreases, 
the transducer is biased by a constant charge Q, hence 
operating at a variable voltage.  

- switching between these two modes is done by an 
external conditioning circuit which detects the local 
maximum and minimum on the value of the transducer 
capacitance Cvar, and which controls the charge flow on 
the transducer.   

As demonstrates our study, such a system exhibits 
much more complex behavior than in the case when the 
transducer is biased with a constant voltage. Depending 
on the magnitude of the external acceleration, four 
different operation modes are possible. Among them, 

only one is appropriate for efficient energy harvesting 
and the three other can be seen as instable behavior. In 
this paper we firstly present a modeling experiment 
demonstrating these phenomena, and then we present the 
theory explaining and characterizing it.  
 
Description of the studied system and of the 
experiment 

The modeling experiment has been carried out on a 
resonator described with a second-order model. The 
capacitive transducer has been described with a VHDL-
AMS model based on the physical equations [5]. Here 
we consider a case of a gap-closing transducer, in which 
the electrodes moves in the direction perpendicular to 
their planes. In this case, Cvar(x) is monotonic and is 
expressed as:  

Cvar (x) = ε0

S
d0 − x

,       (1) 

where x is the mobile electrode (mobile mass) 
position, S is the overlapping electrode area, d0 is the 
initial gap between the electrodes, ε0 is the permittivity 
of vacuum.  

The conditioning circuit used for the experiment 
(modeled with its electrical netlist) is given in fig.1. The 
purpose of this circuit is to put a charge Q on the 
transducer when its capacitance is maximal, and to 
discharge the transducer quickly when its capacitance is 
minimal. The switches SW1 and SW2 are driven by a 
min/max detection circuit measuring the transducer’s 
capacitance (the detector is represented with a VHDL-
AMS model, not shown here). The value of the charge Q 
put on the transducer depends on the value of the 
maximal capacitance Cmax of the transducer and on the 
voltage U0 of the voltage source, Q=U0Cmax. Cmax, in 
turn, depends on the dynamic of the mobile mass 
motion. 

  
Figure 1. Simplified conditioning circuit used for the modeling 
experiment. Rload=1Ohm 



 
The resonator is submitted to a sinusoidal external 

vibration with frequency ωr equal to the natural 
mechanical resonance frequency of the resonator. The 
acceleration amplitude Aext changes slowly over time. 
Such a set-up allows a demonstration of the evolution of 
the system behavior for different external vibration 
magnitudes. An optimal operation of the system 
corresponds to a periodic quasi-sinusoidal motion of the 
resonator’s mass at the frequency of the external 
vibrations. The numeric parameters of the system are 
given in table 1.  
 
Experimental results and discussions 

Fig. 2 presents the plots of the external acceleration 
ramp, the observed displacement of the mobile mass and 
zoomed plots highlighting different operation modes. 
For the zoomed plots, the pulses corresponding to events 
of detection of maximum on Cvar values are presented. 
They are useful to highlight the regularity of the 
operation mode: one and only one max (and min) 
detection by period happens in a regular periodic mode.  
The normal operation mode is observed on the zoom 
subplots 2: there is only one max detection over each 
period, and the existing theory of the constant-charge 
energy harvesting is valid only for this mode (concerning 
the harvested power, the transducer voltage evolution, 
etc., [4]). However, the three other modes are very 
different and are specific to a range of the external 
acceleration magnitude. In the next three subsections we 
consider each of them.    

1) High-amplitude instability (subplot 4). To 
understand the high-amplitude instability, one should 
consider the dynamic of the mobile mass when the latter 
approaches the closest position to the fixed electrodes, 
Xcl. In this situation, the transducer’s capacitance 
increases and the transducer is not biased. At Xcl position 
the maximum of the capacitance is detected, and the 
voltage U0 is applied on the transducer. Note, that for the 
detection of a maximum of the transducer’s capacitance, 
the latter should start to decrease, i.e. the mobile mass 
starts to move out from the fixed electrode. In this case, 
the transducer generates an attractive force 
1
2

U0
2ε0

S
(d0 − Xcl )

2  and the restoring forces are 

generated by the spring and the external vibrations, i.e., 
kXcl + αmAext . Here k and m are stiffness and mass of 
the resonator respectively, α is the coefficient 
between -1 and 1 whose value depends on the phase of 
the external vibrations when the mass position is equal to 
Xcl. The high-amplitude instability happens when, at this 
moment of the U0 voltage application, the attractive 
force is superior to the restoring force. However, 
contrary to a case where the transducer is biased with a 
constant voltage, the mobile mass is not pulled on the 
fixed electrode. Indeed, under the action of the 
transducer’s attractive force, the mobile mass starts to 
move toward the fixed electrode. But then the 
capacitance increases again, hence, a local minimum is 

detected and the conditioning circuit discharges the 
transducer so preventing it from a pull-in. The attractive 
force disappears, and the transducer moves away from 
the fixed electrode. The capacitance decreases, hence a 
maximum of Cvar is detected, the voltage U0 is applied 
again, and the described process is repeated. This 
behavior is observed on the subplot 4 of the fig. 1: One 
can see that the mobile mass remains for a long time on a 
position close the fixed electrode, and during this time 
interval, many maximum  detections happen.   

If the conditioning circuit is ideal (no delay in the 
max/min detection, instantaneous charging of Cvar), the 
Cvar min/max detections happen with infinite frequency. 
In reality, in this case the delays in the conditioning 
circuit define the actual dynamic of the system, which is 
chaotic and is very different from the well-studied pull-
in dynamic, as can be seen on subplot 4.   

2) Middle-amplitude instability (subplot 3). The 
simulation highlights that the regular behavior of a 
constant-charge VEH with gap-closing transducer (as in 
subplot 2) becomes unstable when Xcl is even less than 
the value at which the attractive force exceeds the 
restoring forces. As can be observed on the subplot 3, in 
this mode the 2nd and higher harmonics impact strongly 
the response of the resonator, the dynamic starts to be 
less regular and the efficiency of the energy harvesting 
may decreases. 

3) Low amplitude instability (subplot 1). Another 
manifestation of instability in electrostatic VEH happens 
at very weak amplitudes of external vibrations. On 
subplot 4 it can be seen that the mobile mass remain a 
long time at the extreme positions, and during this time, 
many maximum detection events happen. To our 
knowledge, such a phenomenon has never been reported 
in previous studies.  

The second part of the article presents the theoretical 
tools allowing an analytical description of the behavior 
presented in fig. 2.  
 
III. THEORETICAL DESCRIPTION OF THE 
OBSERVED INSTABILITY MODES 

The proposed analysis of the observed phenomena is 
based on the analytical model of vibration energy 
harvesters proposed in [6]. This analytical tool is based 
on the harmonic balance method limited to the first 
(fundamental) harmonic, and is valid for narrow-band 
resonator (with Q>10).  

 
 Low limit of Aext value required for stable operation  

1) Newtonian law for harmonic 0. The existence of a 
low limit of Aext required for a stable quasisinusoidal 
periodic operation of VEH can be highlighted by 
considering the coupling between the 0 and 1 harmonics 
of the mobile mass displacement. As shown in [6], in the 
considered case the transducer generates a constant force 
F during one half of the period:  

F = 1
2

U0
2ε0

S
(d0 − Xcl )

2 ,            (2) 



 
and a zero force during the another half of the period. 
Hence, the average (0 harmonic) force is F/2. Writing 
down the second Newtonian equation for the 0 
harmonic, we have:  

 kXav = F
2

 and Xav = F
2k

,      (3) 

where Xav is the average position of the mobile mass. 
However, it is evident that Xav should be not less than 
Xcl, hence the valid closest position of the mass Xcl is 
given by the inequality.  

1
4k

U0
2ε0

S
(d0 − Xcl )

2 ≤ Xcl     (4) 

The solution of this inequality is an interval [X1, X2]. 
X1 gives the minimal closest position Xcl for which the 
system can operate in a stable mode for a given 
transducer geometry, k and U0. It is impossible to find a 
close expression defining it. However, it is easy to find it 
through a numeric method.  

2) Newtonian law for harmonic 1. This subsection 
uses the study reported in [6] which described the 
regular behavior of electrostatic VEH through the first 
harmonic method. This analysis introduced a mechanical 
impedance of the transducer at the first harmonic, 

defined as Ψt = − Ft
ω

V
. Here Ft

ω is the complex 

amplitude of the first harmonic of the force generated by 
the transducer, V is the complex amplitude of the 
velocity of the mobile mass. For the considered VEH, 
the transducer has the impedance given by  

Ψt = 1
π

U0
2Cmax

2

ε0S
1

ωXω ,             (5) 

where Cmax is the value of the transducer capacitance 
measured at the position Xcl, Xω is the amplitude of the 
mobile mass displacement. Xω can be expressed through 
Xcl and Xav, hence, the impedance is a function of Xcl. 
Now, the second Newtonian law for the first harmonic 
can be written:  

Ψt + Ψr = mAext

ωX ω ,                (6) 

where Ψris the mechanical impedance of the resonator, 
which is equal to the damping constant µ if the vibration 
frequency is close to the resonance.  

 This equation relates Xcl and Aext. Since the inequality 
(4) transformed into an equality is valid for X1 
corresponding to the minimal Xcl at which the behavior is 
stable, injecting (4) into (6) gives for Aext min:  

Aext min = 4
π

ω 2X1 ≈ ω 2X1              (7) 

This equation gives a very simple requirement on the 
external vibration magnitude: The displacement 
amplitude of the external vibration should be above X1.  

This result is in a perfect agreement with the 
modeling experiment presented in fig. 2.  

 
 

Limit of Aext between high amplitude and middle 
amplitude unstable modes 

As we said in the sec. 2, the high amplitude 
instability happens at the same conditions as the pull-in 
in the constant-voltage biased transducer, i.e. when 
1
2

U0
2ε0

S
(d0 − Xcl )

2 ≥ kXcl + αmAext .            (8) 

Since the mechanical impedance of the transducer is 
real, and since we consider the system at the resonance, 
the external force (maext(t)) and the displacement of the 
mobile mass are shifted by π/2, hence, α=0. Similarly 
with the inequality (4), the minimal Xcl at which the 
system enters into the high amplitude instability mode is 
given by the equation corresponding to (8). Note that this 
value corresponds to the instable equilibrium position of 
the mass when the transducer is biased with a constant 
voltage U0. (called Xeq.inst.). This value can only be 
obtained by solving the equation numerically. For the 
studied system it is 12 µm: Indeed, on the fig. 2, the 
large-amplitude instability is observed for larger Xcl. 

 
Limit of Aext between stable mode and middle 
amplitude unstable modes.  

The middle-amplitude instability at which a periodic 
but non-sinusoidal behavior is observed, is a complex 
phenomenon related with the nonlinearity of the circuit. 
It is difficult to explain “qualitatively”. We propose the 
following explanation: This mode is related with the fact 
that the position Xcl becomes too close to the fixed 
electrode, and that at this point, the high harmonics of 
the transducer’s force can’t be filtered by the resonator 
passband characteristic and starts being dominant in the 
circuit behavior.  

The theory reported in [6] offers a sufficient 
condition for stability of the regular mode (subplot 2). 
Obviously, when Aext increases and the middle-amplitude 
instable mode appears (subplot 3), the regular mode 
(subplot 2) becomes unstable. Hence, the condition 
given in [6] provides a necessary criterion for 
appearance of the unstable mode at the given amplitude 
of vibration. This condition is formulated as:  

d Ψ(X)
dX

X = X ω

≥ Ψ(Xω )
dX ω ,      (9) 

where Ψ(X) is the total mechanical impedance of the 
system ( Ψt + Ψr  ). This condition does not directly 
depend on the external vibration magnitude, but is 
indirectly related with it through Xω. When applied to 
our system, the criterion (9) gives 8.7 µm for the 
maximal Xcl at which the system is stable. Above this Xcl, 
the system enters in the middle amplitude instability 
mode. This is in a good agreement with the simulation. 
However, the criterion (9) provides only a necessary, not 
sufficient condition for appearance of the middle 
amplitude instability mode. Hence, in general, the 
maximal Xcl and Xω predicted with it are pessimistic: The 
dynamic can be stable and regular event for larger values 



 
of Xcl and Xω. Further investigations are needed in order 
to find a necessary and sufficient criterion.  
 
IV CONCLUSION  

This study provided an insight in the dynamic 
behavior of capacitive VEH using a gap-closing 
capacitive transducer. The issues related with stability 
were deeply investigated. It was discovered that 
depending on the magnitude of external vibrations, three 
different kinds of pathologic behavior is possible: at low 
amplitude, at large amplitude and at middle amplitude. 
None of this behavior is similar with what has been 
observed for constant voltage biased capacitive 
transducer. A theoretical insight allowing a quantitative 
characterization of the highlighted instability phenomena 
is exposed in the paper.  
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Table 1. Parameters of the modeled system  

 
 
 
 

 
Figure 2. Dynamics of the VEH and zooms on different stability modes : 1) low amplitude instability, 2) stable regular mode, 3) 
middle amplitude instability, 4) high amplitude instability 

Mass, 
m, kg 

Stiffness, 
k, Nm-1 

Damping constant, 
µ, Nsm-1 

Quality 
factor, Q

Resonance 
frequency, f, Hz 

Transducer’s 
gap, d0, m 

Transducer 
area, S, m2 

U0, V 

100·10-6 150 1.0·10-3 40 194.9 20·10-6 10-2 ×·10-2 15 


