Bifurcations and Chaos In Electrostatic Vibration
Energy Harvesters

Elena Blokhina, Dimitri Galayke®, Rhona Wadg Philippe Bassétand Orla Feely
I University College Dublin, Ireland
2 Universite Pierre et Marie-Curie, France
3 Université Paris-Est, ESYCOM, ESIEE Paris, France

Switch control

Abstract— In this paper, we present an analysis of an electro-
static vibration harvester operating in the constant-chage mode.
The goal of the study is to bound regions of control parametes
where the system displays steady-state harmonic oscillatis as
required for practical use. We show how the system can be
presented as a nonlinear oscillator and analysed employinthe
multiple scales method, Floquet theory and Lyapunov exponds.
We determine the conditions for the onset of steady-state oi-
lations, the period doubling bifurcation and transition to chaos.
This allows us to bound regions of control parameters where ] o o
the system displays desired regular oscillations and, thefore, to Fig. 1. Schematic view of an electrostatic vibration enengyvester.
identify maximal harvestable power for a particular archit ecture.

. INTRODUCTION wherem is the mass of the resonatéris the damping factor,

Electrostatic (capacitive) vibration energy harvestezs (wo = \/k/m is the natural frequency; is the spring constant,
VEHS) convert kinetic energy of the environment into elecdext IS the external acceleration amplitude,., is the external
trical energy using a capacitive transducer [1]. E-VEHs aféequency and), is the phase of the external forcg(z, i) is
particularly suitable for microscale implementation, aind the force generated by the transducer. The detailed déserip
recent years they have become the subject of a growing afédhe conditioning circuit can be found in [4], [6].
of research [2]-[4]. The main issue of e-VEH design is the Depending on the a_rchltecture Qf the conditioning circafit,
optimization of converted power for given environmentatco €ach cycle one quantity can be fixed on the transducer when
ditions and given limitations on the electrical and mecbahi Ctrans = Cmaz: the charg&o, the energyl, or the voltage
components. One of the limits of convertible power is set b¥o- IN this paper, we consider the most common case described
the complexity and nonlinearity of the system, as demotestrai [4] where the energyVy is fixed. _ o
in [5]. In particular, desired harmonic oscillations arespible _FOr @ gap-closing transducer, the capacitance functidsl.is [
only for some set of system parameters. Otherwise, theraystd] Ciran = Co/(1 —x/d), and the transducer force is
displays chaotic behaviour (hon-harmonic modes) in whieh t W 4 <
conditioning electronics cannot operate properly. Fos¢hea- Jro(x, &) = {d(lz"““”/d)’ . )
sons, optimal design of a e-VEH requires a deep understgndin 0 z>0
of the overall system dynamics, including nonlinear eflect Here d is the equilibrium gap and,,.. is the maximal

The work [6] introduced an analytical tool for analysis otiiscplacement.

a e-VEH as the coupled system, while ref. [7] studies steady-In order to reduce the number of parameters and outline
state oscillations in the harvester applying a formal ai@dy only essential ones, the following normalised variables ar
approach. Building on these works, the aim of this paperiistroduced: timer = wqt, dissipation 3 = b/(2mwy),

to extend the analysis of the e-VEH behaviour in order tgormalised external frequenty= we,:/wo = 140,y = x/d,
identify the limit of regular harmonic operation of a e-VEHy = A,,;/(dw?) andvy = Wy /(d?*mw?). Equation (1) is now
that employs a gap-closing transducer (one of the most wid&lritten as

used). We study bifurcations of the steady-state orbit and

determine the condition for the period doubling bifurcatio Yy 28y +y = fily,y') + acos(Qr +6o) ®)
where the prime denotes the derivative with respect to dimen

Il. STATEMENT OF THE PROBLEM . : . P .
. i i sionless timer and the functionf;(y,y’) is the normalised
A simple electrostatic harvester consists of a highes- yersion of (2):

onator, a variable capacitor (transducéf)...,,, and a condi- y ,
tioning circuit (Fig. 1). The displacementof the mass-spring- Fuly,y') = vy ¥ S 0 4)
damper system driven by the external oscillations and &ftec thy

0 y >0
by the transducer force is described by While the mass, the natural frequency and other parameters

&4 (b/m)E +wix = Acyt cos(wepit +90) + fi(x,2)/m (1) are fixed, the acceleratiod,.,; and the energyV, (and their



dimensionless analogues and ) may vary and affect the
behaviour of the system. We will refer to them as the control
parameters of the dynamical system. Typical parameteis use
in the numerical simulations of later sections are listed in
Table I.

For the gap closing transducer, the coefficients are
123 21

fO = ) =
2(1 — ym) (1 — ym)
IV. NONLINEAR BEHAVIOUR AND BIFURCATIONS
A. Motivation for Further Analysis.

In the previous section we noted the necessary condition
for stability following ref. [7]. However, it is known thatof

ap = O, b1

(8)

TABLE |
PARAMETERS OF THE SYSTEM

m 200{,03"’ k@{1 nonlinear oscillators increase in the amplitude of the rextke

E \/5'3%)% Nn’\flm force or other parameters typically leads to bifurcatiofis o

a 20-10-°m previously stable orbits and, eventually, to irregularaatic

S 1010 * m? behaviour [10]. We have carried out a series of numerical
,XVO 0.15 —1?6 ln(1Js’iJ simulations of the system shown in Fig. 1 using a VHDL—

ext -

AMS model [11]. A typical result is shown in Fig. 2. A
slowly growing ramp of the acceleration envelapg,; versus
time is depicted in Fig. 2a. At the same time, we trace the
a(y§placement of the resonator versus time in Fig. 2b. Sinee t
fgamp changes very slowly, we consider this process as quasi-
Static and therefore we observe the evolution of the steady-

&fhte behaviour of the e-VEH at a variation 4f,;. This plot

I1l. STEADY-STATE OSCILLATIONS
In this section we very briefly discuss steady-state beh
iour. Substantial results that we have recently obtained
the system with two configurations of the transducer, ar
?r:/eeré?ga[g] i?gt:ybpjrig\(/)il(l)cu[f% areen:elg OE;EFd tlaewr]ﬁlYI\t/ie Iirfcélcean be seen as an analogue of a bifurcation diagram.
Y y empioying P According to Fig. 2, there are the following qualitative

method (MSM) [9], a type of perturbation technique that iéhanges (bifurcations) in the system behaviour with a ceang

02?2 asptp I|eedsfobrc§[1heaantill¥§igf;/v:glély r:]gen:lge?err(r)\ztlméici):atm the parameten..,: (i) appearance of steady-state harmonic
various types, u u u X 'oscillations (fragment 1 in the figure); (ii) period doulgin

The solution obtained from the MSM has the form bifurcation (fragment 2, see Fig. 3a) and (iii) transitian t
Yo(T) = Yaw,0 + ao cos((1 + o)1 + 0y — 1) (5) chaos (fragment 3, see Fig. 3b). Two closed orbits and a

. ortion of a chaotic trajectory at fixedl.,; and W, that
whereay, yq.,,0 andy are the steady-state amplitude, avera J y cot 0

displacement (constant shift) and phase of oscillatiohs (t
index ‘0’ emphasizes that this is a steady-state solutibhg

fustrates the above bifurcations are shown in Fig. 4.

amplitudeao and the phase, are found from the equations: f:v(; @
b m m 8
g Sinwo = ﬁao_i_ M’ g cos 1/10 = a0 — al(y .,0) 6
2 2 2 9 ;
a2 bl (Um 0) ° ay (Um 0) 2 )
— e ) B s 6
4 <5ao + 2 > + (aoo + —9 > (6) 0 — T I ; : . ‘ : ‘ T ‘

wherey,, o denotes the maximal displacememnt o = yqv,0+
ag. The transducer force is a periodic function since the=
solution (5) is a harmonic oscillation. Therefore, we hasedi
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the Fourier series fof; 0.4
02
fi(T) = fo + a1 cosO(7) + by sinO(7) 0
0.2

wheref(r) = (14 o) + 6y — 1o and the functionsfy, a: 04 =

and b; are the standard coefficients of the Fourier series but 0 1000 2000 3000 4000 =0t
dependent on the amplitudg and the average displacement , o
Yav,0- NOte that due to the zero harmonic in the Fourier series, ™ ] (© g;’;
the oscillation (5) has this constant shjtt, o = fo. 36 ] ’
The orbit given by (5)-(6) is stable if the following condi- 32 | 0-12
tions are fulfilled: 5g ;7@/' 0.08
v by 4 0.04
208 + = +-—>0 2.4 T T T T T T —0
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b b a’ a
(ﬁ + —1) (ﬁ + —1) + (U + —1) (0 + —1) >0 Fig. 2. (a) A slowly growing ramp of the envelope of the extroscillations
2 2a0 2 2a9 Aeqt and (b) the corresponding displacement of the harvesteuragtions

If the above conditions are not fulfilled, the orbit that idided

of normalised time. Three fragments of principally differdehaviour of the
system are marked. Magnified fragment 1 demonstrating teet@f steady-

by theseao, y..,0 andey is unstable, or a saddle orbit. Thestate oscillations is shown in subfigure (c). The two othegmifed fragments

above stability condition is necessary, but not sufficient.

are shown in Fig. 3Wy = 20 nJ.



ggi @ L ™ and we obtain the equation
o 0.4
e ““““““ “““HH“MI ' - C"+26¢"+¢ = foUm,0)Ym,c +b1 (Ym.0)Ym.c sin(Q7+00— )
"3 NGO oo
8 —| il L that generally describes the evolution of small deviatioos
7.8 A/Y | . | . | . 0.4 the steady-state orbit. Note that the prime for the funation
3500 3600 3700 3800 1=t fo and by is taken with respect to their argument, i,
This equation contains the variablg,  which is undefined
yoz;‘s/d analytically in the most general case. To address this jsgee
05 can choose to launch the initial deviation at the moment when
025 Yy =0, ie. theny,(0) = ¢(0), and we will use( instead
0 of vy, ¢. This ‘trick’ significantly simplifies the analysis.
-0.

25
T T T T T T T T — 05 <H+2ﬁgl+<(1_f(/l(ymﬁ)_bll(ymﬁ) Sin(QT—i_eO_wO)) =0
4100 4200 4300 4400 4500 =0t (12
The latter can be reduced to a well-known parametric equatio

Fig. 3. A slowly growing ramp ofA.,: the envelope of the external the Mathieu Equation

oscillations (the blue line, refer to the axis on the leftfidhe corresponding
displacement of the harvester (the black line, refer to ttie an the right) as

functions of normalised time. Figure (a) is a magnified fragir2 from Fig. 2 &+ (6 +2ecos2t)§ =0 (13)
and shows the doubling bifurcation. Figure (b) is a magnifredment 3 and . . . .
shows transition to chaodVy = 20 n.J. by introducing the variable transformations:
¢ =exp(=pBt)§, T7=2t/Q+ 70, 70 = (o — 0o — 7/2)/Q
The analysis performed with the MSM allows us to de- 4 9 4 ,
i illati 0= 105"~ fo(ymo)), 2¢= =5b1(¥m.,0)
termine the onset of steady-state oscillations [5], [7]eTh 02 0\Im,0/)s Q2 1Ims

necessary condition for the onset is obtained by lettifng- 0 For equation (13), it is known that for certaif and =,

in (6): there exist areas of so-called ‘parametric instability’antthe
Q™" =y /1 or e ) (9) solution of (13)¢ = 0 is unstable [9]. Returning to the original
system, this means that the small deviatignsf the steady-
or in the dimensional values, stateyy will start increasing instead of decaying. The areas of

parametric instability for the Mathieu equation are foumthie

latter reference. Thus, we can determine stability of tH@tor

This means that in order to put the system in oscillations $imply by checking whethef ande defined for equation (12)

Acsr = 3 m/s?%, the parametel, must be selected less tharlie in one of parametric instability areas.

Wi = 18.9 n.J. However, a more complete analysis of parametric equations
can be obtained by employing Floquet theory [10] that not

B. Equation for Small Perturbations and Floquet Multipliers.  only provides us with bifurcation values of parameters tsn a

Now we introduce a small deviatioti from the steady- indicates what type of bifurcation is undergone by the oagi

AT — oW, /(mmd)  of W = mmdAer /2 (10)

ext

state solutiony, and assume that solution of (3) igr) = Orbit. For this purpose, one constructs a matrix equaticeta
yo(7)+¢ (7). The perturbation of the displacemenwill cause ©0n the equation for small perturbations (12):
a perturbationy,,  of the maximal displacement about the e 0 1 G ¢
steady-state value staig, o: ¥m = Ym.o + Ym.c. Since this < ! ?> = ( B > < ! 2> (14)
PR : m 12 K(r) 28) \m  m2
perturbation is small, the functionf(y,,) andb; (v,,) can be
represented as where the prime denotes the derivative with respect to time
, , 7, n = d¢/dr and the time dependent coefficiefif(r)
fo = folym.0) + fo(ym,0)ymc: b1 = 01(Ym0) T01(Ym0)ymc is K(r) = [=1+ f(ym.0) + U (ym.o) sin(Qr + By — o).
The latter allows one to find a set of fundamental solutions
@ ®) © (two fundamental solutions in our particular case). Danpti
dy/dt dy/dt dv/di Z = (5 $2), we assume initial conditions for the set (14) in
0.4 0.4 g';‘ the form of the identity matrixz(0) = I. Solving (14) on one
062 0'02 0 period T = 27/Q we obtainM = Z(T'), the monodromy
02 02 02 matrix. The eigenvalues of the monodromy math%, the
04 04 0.4 Floquet multipliersu, indicate stability of the orbit. The orbit
0.6 0.6 06— is asymptotically stable if there are no eigenvalues oattie
04 0 04 Y 04 0 04 Y 04 0 04 08Y ynit circle. If at a variation of control parameter a Floquet

Fia 4. Traiectories in the stat (&) a closed oritdh ds t multiplier leaves the unit circle through-1, the original
ig. 4. Trajectories in the state space: (a) a closed or rresponds to . : ; ; i
harmonic steady-state oscillations (5)4,: = 7.5 m/s? (b) a closed orbit fixed point or OrbItS_ _undergoes a dOUb“ng b|furcat_'0n’ if
at Acr = 8.5 m/s2 after the period doubling bifurcation and (c) a chaotidhrough+1, a transcritical, symmetry-breaking or cyclic-fold
attractor atAesz; = 9.5 m/s*. Wo = 20 n.J. bifurcation, and, finally, if two complex conjugate muligs



1277 A, mis° 3 Line 2 (black) shows the doubling bifurcation and bounds

the area of steady-state oscillations with period 2. The lin
was obtained by solving numerically the set of fundamental
solutions (14) which yielded the monodromy matrix of the
system. We trace when and how one of the Floquet multipliers
leaves the unit circle. We have found out that the multiglier
cross it through—1 (therefore, it is a doubling bifurcation)
and determined the bifurcation values of the parameteris. Th
agrees with the modelling shown in Fig. 3a that clearly
illustrate the period doubling of the original orbit. Noteat
resulting oscillations are stable as well.
' ' ' ' ' ' Finally, line 3 indicates when the largest Lyapunov expdnen

0 10 20 30 becomes positive and the system displays chaotic osoilsti
Fig. 5. Plane of parameté#Vy, Acz+) Where the different areas correspondThIS !'ne ag(ees with the mOde”'”Q shown in Fig. 3b. It _'S
to different regimes displayed by the system. Line 1 is theebf steady- Very interesting that the system displays only one doubling
state oscillations, line 2 is the doubling bifurcation aime|3 is transition to pifyrcation and therefore the transition to chaos is nadulgh
chaos. . . . .

the Feigenbaum scenario but rather through intermittency.

chaos or unstable

no oscillations W nJ
0

V. CONCLUSIONS

This study analysed an e-VEH as a nonlinear oscillator,
focusing in particular on the limits of regular behaviouher
analysis presented here quantifies the phenomena observed
C. Lyapunov Exponents. previously in the behavioural model [5] and provides neagss

The Lyapunov exponents or characteristic exponents are & d sufficient conditions for a regular harmonic mode of the
sociated with a trajectory and essentially measure theageere' EH. Th's provides designers of e-VEHs W|th_a_powerful
rates of expansion and contraction of trajectories sumgn tool allowing them to unders_tand fundamgntal .I'm'ts qf the
it [10]. They are asymptotic quantities, defined locally iate system at ear ly stages of design. Al gnalytlcal d'scom
space, and describe the exponential rate at which apemmbaver'f'ed by simulations of the behavioral model carried out
to a trajectory of a system grows or decays with time at\%'th VHDL-AMS.
certain location in the state space. The existence of at leas REEFERENCES
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