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m Restriction: uninterrupted execution of the task on a single-core
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m Preemptive System:
» Example of cache analysis: Resilience analysis
m Multi-Core:

» Predictability on a single-core level
» Design principles for predictable multi-core
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m Cache related preemption delay (CRPD):

» Impact of preemption on the cache content
» Overall cost of additional reloads due to preemption
= Analysis aims at bounding the number of additional cache misses
due to preemption

Ty —
T, T— 1 1]
[0 = CRPD

1 = Task Activation
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m CRPD computation:
» preempted task: Useful Cache Blocks (UCB)
» preempting task: Evicting Cache Blocks (ECB)

m CRPD from UCB and ECB:

» Previous combination overestimates
= Resilience analysis
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Definition (Useful Cache Block)

A memory block m at program point P is called a useful cache block, if
a) m may be cached at P

b) m may be reused at program point P' that may be reached from P
with no eviction of m on this path.

X= hit_
= MISS
° P
—e—e—e—x—x—e—x—x—l—e—x—x—x—e—x—x—>
A B D [ B A C
Cache Content:
[A.B,C, D]
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Definition (Useful Cache Block)

A memory block m at program point P is called a useful cache block, if
a) m may be cached at P

b) m may be reused at program point P’ that may be reached from P
with no eviction of m on this path.

X = hit
O= miss
P
—e—e—e—x—x—e—x—x—l—e—*—*—*—e—x—x—>
A B D C B A C
Cache Content:
[4.8,C.0]
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Definition (Useful Cache Block)

A memory block m at program point P is called a useful cache block, if
a) m may be cached at P

b) m may be reused at program point P’ that may be reached from P
with no eviction of m on this path.

X = hit
O= miss p
—e—e—e—x—x—e—x—x—l—e—*—-x——*—e—x—x—>
A B D C B A C
Cache Content:
c [A B, C,D]
CRPDys = Z CRPD{cs
s=1
. n = associativity
CRPDjes = BRT x min(JUCB(s)|,n) BRT = Block Reload Time
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[Tomiyama & Dutt, 2000] COMPUTER SCIENCE
Definition (Evicting Cache Blocks (ECB))

A memory block of the preempting task is called an evicting cache

block, if it may be accessed during the execution of the preempting
task.

Cache Content: X Y z Cache Content:
WBCD r—©—O—%—©—> [X.V.Z.D)
~
’

~

A B C B A C

@ = additional miss due to preemption (CRPD)
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[Tomiyama & Dutt, 2000] COMPUTER SCIENCE
Definition (Evicting Cache Blocks (ECB))

A memory block of the preempting task is called an evicting cache

block, if it may be accessed during the execution of the preempting
task.

Cache Content: X Y z Cache Content:
WBCD r—©—O—%—©—> [X.V.Z.D)
~
’

~

A B C B A C

@ = additional miss due to preemption (CRPD)

s _J O if ECB(s) =0
CRPDzeo = { BRT x n otherwise
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Impact of the Preempting Task e e
on the Preempted Task

CRPD (using UCB and ECB)

Cc
CRPDycssecs = Y, min(CRPD; ., CRPDE,)

s=1
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Impact of the Preempting Task
on the Preempted Task (Example)

0x0a
0x0b
0x0c

[c, b, a,x]-%a, ¢, b,x]-2[b, a ¢, x]-S5[c, b,a,x]

Claire Maiza Static Cache Analysis and Multi-Core

SAARLAND
UNIVERSITY
I S —
COMPUTER SCIENCE

no miss

LIP6 2010 10/22



SAARLAND
UNIVERSITY

Impact of the Preempting Task —_—
on the Preempted Task (Example)

[e, b, a, x] i[a, ¢, b, x] L[b, a, c, x] L[c, b, a, x] no miss

0x0c —{e

Ox0a
0x0b ECBs <

le,c. b, a] i[a, e, c, b L[b, a,e,c| &[c, b, a,e] no miss

| CRPDUCB = |UCB| =3
| CRPDECB = Nn= 4

m CRPDycggece = min(CRPDycs, CRPDgcs) = 3
» Overestimation: number of additional misses=0 < 3
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Impact of the Preempting Task —_—
on the Preempted Task (Example)

0x0a [c.b,a,x]-L[a.c. b, XIA[D, a,c,x]-Sc,b,a,x] no miss
0x0b ECBs

0x0c —{e

I le.c.b.d-Zae.c.tl 2o aec S bael no miss

| CRPDUCB = |UCB| =3

| CRPDECB = Nn= 4
m CRPDycggece = min(CRPDycs, CRPDgcs) = 3
» Overestimation: number of additional misses= 0 < 3

m Why?
> |ecs| to evicta UCB = 2
> but, |ecs| =1
» One single ECB is not sufficient to evict a UCB
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Determining max|ecs| s.t. no additional cache miss occur

m
a4 [m7 Rt e R ) —]
m e UCB a
a
IT?; [a37a27a17ma - =y =y —]
o Imas,aar, ]
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Determining max|ecs| s.t. no additional cache miss occur

m
a1 [m7 =y Ty Ty Y Y 7Y _]
m e UCB a
mis
4-resilient f; [as,az, a1, m,_, _, -, ]
! [ma as,ag, ay, -, - - —]
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Definition (I-Resilience)

A memory block m is called I-resilient at program point P, if all possible
next accesses to m that would be hits, would still be hits in case of a
preemption at P with | accesses.
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Definition (I-Resilience)

A memory block m is called I-resilient at program point P, if all possible
next accesses to m that would be hits, would still be hits in case of a
preemption at P with | accesses.

preempted task preempting task
-m
L a1 [m7 iR B Bt Bl 7]
m fnléCB a
4-resilient %CB = {e1, e, €3, €4}
T [33, €4,€3,62,81,a,4ay, m]
=m

L [m,as, e4, 63,62, €1, a,a1]

if |ecs| < /then the UCB is not evicted
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CRPD (combining UCB and ECB by using resilience)

may contribute to CRPD

CRPD < BRT x | UCB \{m|mis |ecs -resilient}fl

~
may be useful must remain useful
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CRPD using Resilience - Example

0x0a
0x0b
0x0c

ECBs
={e}

(e, b, a,x]-2[a, ¢, b,x] -2 [b, &, ¢, x]-S>[c, b, a,x]

[e,c. b, a] i[a, e, c, b L[b, a,e,c| L[C, b, a,e]
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no miss
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0x0a [e, b, a, x]i[a, c, b, x]i[b, a,c, x]i[c, b, a, x] no miss
0x0b ECBs
0x0c = {e}

le.c.b.a-Llae.c.t]-Lb.ae.d-Sc.b.ael no miss

B > |ecs| =1
» a, band c are 1-resilient
» CRPD[%sece = BRT x |UCB\ {m | mis |ecs|-resilient}| = 0

UCB&ECI
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[c.b,a x]-[a, ¢, b, x]-s[b, a, ¢, x]-S5[c, b, a, x] no miss

0x0a

0x0b ECBs

0x0c — {e}
le.c.b.a-Zae c.b]-2b,ae c-Se b ae] no miss

B > |ecs| =1
» a, band c are 1-resilient
» CRPD[%sece = BRT x |UCB\ {m | mis |ecs|-resilient}| = 0

| |nS'[ead Of- CRPDUCB&ECB == min(CRPDUCB,CRPDECB) — 3 X BRT
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[c.b,a x]-[a, ¢, b, x]-s[b, a, ¢, x]-S5[c, b, a, x] no miss

0x0a
0x0b ECBs
0x0c — {e}

le.c.b.a-Zae c.b]-2b,ae c-Se b ae] no miss

B > |ecs| =1
» a, band c are 1-resilient
» CRPD[%sece = BRT x |UCB\ {m | mis |ecs|-resilient}| = 0

| |nS'[ead Of. CRPDUCB&ECB == min(CRPDUCB,CRPDECB) = 3 X BRT
m Resilience analysis leads to a more precise CRPD
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m Cache Policy: LRU
» FIFO and PLRU cannot be "directly” analysed using UCB/ECB.

m Architecture: Need a constant bound on the block reload time
» The number of additional misses is used to bound the interferences.
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m Predictability: hard to quantify
m Predictable cores are a prerequisite for predictable multi-cores
m General problem: Sharing of resources
» Main memory, caches
» Busses
» 1/0
» Flash memory
m Sharing may be
» fundamental (necessary access to application global variables)
» incidental (processors happen to use the same bus for access to
non-shared devices)
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Predictability on the Single-Core Level: A
Caches

Several new notions regarding cache replacement policies:

m Predictability.
quantitative measure of how fast information about cache state
can be gained

m Competitiveness:
quantitative measure of how numbers of hits and misses of
different policies relate

m Sensitivity:
quantitative measure of how the number of hits and misses are
influenced by intial cache state

Gives a sound and precise quantitative definition of predictability of
caches
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Predictability on the Single-Core Level: SIS
Caches

Predictability of Caches depends on their replacement policy:

m Least-Recently-Used (LRU) highly predictable, precise and
efficient abstractions exist

m First-In First-Out (FIFO) inherently less predictable

m Pseudo Round-Robin as in Motorola ColdFire, extremely
unpredictable
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Predictability on the Single-Core Level: A
Pipelines

Classification of architectures:
m Timing compositional (e.g., ARM7):
No timing anomalies present,
local worst-case behaviour safely approximates global worst-case
behaviour

m Compositional with bounded effects (e. g., TriCore (probably)):
Timing anomalies but no domino effects,
local worst-case behaviour safely approximates global worst-case
behaviour up to a constant, additive factor

m Non-compositional architectures (e.g., PPC 755):
Timing anomalies, domino effects,
all global paths have to be considered

from Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, IEEE TCAD, July 2009
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What One Should Avoid in a Multi-Core Architecture

m a complex architecture, not fully-compositional:
» high complexity of the analysis
» bound on additional delays are not constant
(access to a shared resource, preemption)
m a cache with a non-LRU policy
> less precise WCET bounds
» more complicated computation of less precise CRPD bounds
m a unified cache
» interferences impair precision
» more complex analysis
m shared bus protocol with unbounded access delay
» unbounded execution time
» no guarantees on timing constraints
m frequently used shared resources

» may lead to an unschedulable system
» TDMA-like protocol: limited by idle-time
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Minimise sharing in multi-processor architectures:

m Interferences might be huge (bus contention, cache pollution)
m Huge overestimation when analysis is possible

» Set of tasks that might be executed in parallel
» Cache contents

PROMPT (PRedictability Of Multi-Processor Timing)

m Start with a generic, parameterisable architecture with predictable
(fully timing compositional) cores

m Instantiate architecture for given set of applications, based on their
resource requirements
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Design Principles e
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m Simplifications of components of the architecture
m Elimination of interferences on shared resources:

» Wherever it is not absolutely needed
» Private resources for private uses
» Data sharing for global state

m Accesses to the shared global state

» Determination of delays, or
» Cumulative analyses of WCET, bus arbiter and scheduling
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m Preemptive systems:

» Precise analysis of cache interferences
» Requires LRU cache and constant-bounded cache access delay

m Predictability: not a boolean property
» Introduction of shared resources decreases predictability but may
benefit efficiency
= PROMPT:
» Predictable components of the architecture (core)
» Reduction of interferences (when possible)
» Determination of access delay
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1 Hierarchical privatization
» decomposition of the set of applications according to the sharing
relation on the global state
» allocation of private resources for non-shared code and state
» sound (and precise) determination of delays for accesses to the
shared global state
2 Sharing of lonely resources
» Costly lonely resources will be shared
» Access rate is low compared to CPU and memory bandwidth
» Accesses happen infrequently = access delay contributes little
3 Controlled socialization

» introduction of additional sharing to reduce costs
» controlling loss of predictability
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0x08
0x09
Ox0a
0x0b

[b.2,9.8]-2:[8.b,2,9]-2[9,8,b.2]-%(2,9.8,b]-2:[0,2.9.8] 0 misses

ECBs
- e} 8* 9* a* b*
le,b,a,9]=-[8,e,b,a]—[9,8,e,b]-"[a,9,8,e]—[b,a 9,8 4misses

m |UCB(s)| =4
m |[ECB(s)| =1
mEn=4

® number of additional misses= 4
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Upper-bound on the CRPD - direct-mapped cachXsr!
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m using UCB [Lee et al., 1996]:

CRPDycg = BRT - [{sj | 3m € UCB : mmod ¢ = s;}|

m using ECB [Tomiyama & Dutt, 2000]:

CRPDgcg = BRT - [{s;j | 3m € ECB : mmod ¢ = s;}|

m using UCB and ECB [Negi et al., 2003, Tan & Mooney, 2004]:

CRPDycssece = BRT - |{si| dIme UCB: mmodc=s;
AIm’ € ECB: m’ mod ¢ = s;}|
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ECBs
= {x}

< b, a]-2-1b,a] € e, b] L[, 6] < [c, 6] S+ [c,e] 2 misses

[x, b] [a x] [e al H[b e] [c b] H[e c] 5 misses
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CRPD for FIFO: Pitfalls —_—
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ECBs <[b,a]i[b,a]i[e,b]i[e,b]i[c,e]i[c,e] 2 misses
= {x}

[x, b] [a,X] (e, a] H[b e] [c, b] H[e c] 5 misses

m |[UCB(s)|=2
m |[ECB(s)| =1
mn=2

m But: number of additional misses= 3
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CRPD for PLRU: Pitfalls UNIVERSITY
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N LI LN LI LN LN
©) (© 0 misses
alb|c|d a|bfc|d alb|c|d a|bfc|d albjc|d a|bfc|d albfc|d
—(xv}
—> —> —> —>
@ (@ 5misses
aly|c|x aly|[d]|x bly|d|x bly|d]|c bly|d]|c blyl|al|c bfd|afc

|UCB(s)| = 4
|[ECB(s)| =2
mn=4
m But: number of additional misses= 5
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