
Static Cache Analysis
and Design for Predictable Multi-Core

Claire Maı̈za (Burguière)

Department of Computer Science
Saarland University

LIP6 2010

computer science

saarland
university

computer science

saarland
universityTiming Analysis

Fr
eq

ue
nc

y

Exec-timeLB BCET WCET UB

Analysis-guaranteed timing bounds

Overest.

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 2 / 22

computer science

saarland
universityTiming Analysis

Restriction: uninterrupted execution of the task on a single-core

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 3 / 22

computer science

saarland
universityStructure of the Talk

Preemptive System:
I Example of cache analysis: Resilience analysis

Multi-Core:
I Predictability on a single-core level
I Design principles for predictable multi-core

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 4 / 22

computer science

saarland
universityContext - Preemptive Systems

Cache related preemption delay (CRPD):
I Impact of preemption on the cache content
I Overall cost of additional reloads due to preemption
⇒ Analysis aims at bounding the number of additional cache misses

due to preemption

T1

T2

= CRPD
= Task Activation

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 5 / 22

computer science

saarland
universityCRPD for Set-Associative Caches - LRU

CRPD computation:
I preempted task: Useful Cache Blocks (UCB)
I preempting task: Evicting Cache Blocks (ECB)

CRPD from UCB and ECB:
I Previous combination overestimates
⇒ Resilience analysis

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 6 / 22

computer science

saarland
universityUseful Cache Block - [Lee et al., 1996]

Definition (Useful Cache Block)

A memory block m at program point P is called a useful cache block, if
a) m may be cached at P
b) m may be reused at program point P ′ that may be reached from P

with no eviction of m on this path.

P

Cache Content:
[A, B, C, D]

A B D C B A C

= hit
= miss

CRPDUCB =
c∑

s=1

CRPDs
UCB

CRPDs
UCB = BRT×min(|UCB(s)|, n)

n = associativity
BRT = Block Reload Time

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 7 / 22

computer science

saarland
universityUseful Cache Block - [Lee et al., 1996]

Definition (Useful Cache Block)

A memory block m at program point P is called a useful cache block, if
a) m may be cached at P
b) m may be reused at program point P ′ that may be reached from P

with no eviction of m on this path.

P

Cache Content:
[A, B, C, D]

A B D C B A C

= hit
= miss

CRPDUCB =
c∑

s=1

CRPDs
UCB

CRPDs
UCB = BRT×min(|UCB(s)|, n)

n = associativity
BRT = Block Reload Time

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 7 / 22

computer science

saarland
universityUseful Cache Block - [Lee et al., 1996]

Definition (Useful Cache Block)

A memory block m at program point P is called a useful cache block, if
a) m may be cached at P
b) m may be reused at program point P ′ that may be reached from P

with no eviction of m on this path.

P

Cache Content:
[A, B, C, D]

A B D C B A C

= hit
= miss

CRPDUCB =
c∑

s=1

CRPDs
UCB

CRPDs
UCB = BRT×min(|UCB(s)|, n)

n = associativity
BRT = Block Reload Time

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 7 / 22

computer science

saarland
universityEvicting Cache Blocks

[Tomiyama & Dutt, 2000]
Definition (Evicting Cache Blocks (ECB))

A memory block of the preempting task is called an evicting cache
block, if it may be accessed during the execution of the preempting
task.

A B C B A C

Cache Content:
[A, B, C, D]

Cache Content:
[X , Y , Z , D]

X Y Z

= additional miss due to preemption (CRPD)

CRPDs
ECB =

{
0 if ECB(s) = ∅
BRT× n otherwise

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 8 / 22

computer science

saarland
universityEvicting Cache Blocks

[Tomiyama & Dutt, 2000]
Definition (Evicting Cache Blocks (ECB))

A memory block of the preempting task is called an evicting cache
block, if it may be accessed during the execution of the preempting
task.

A B C B A C

Cache Content:
[A, B, C, D]

Cache Content:
[X , Y , Z , D]

X Y Z

= additional miss due to preemption (CRPD)

CRPDs
ECB =

{
0 if ECB(s) = ∅
BRT× n otherwise

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 8 / 22

computer science

saarland
universityImpact of the Preempting Task

on the Preempted Task

CRPD (using UCB and ECB)

CRPDUCB&ECB =
c∑

s=1

min(CRPDs
UCB, CRPDs

ECB)

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 9 / 22

computer science

saarland
universityImpact of the Preempting Task

on the Preempted Task (Example)

0x0a
0x0b
0x0c

[c, b, a, x]
a

[a, c, b, x]
b

[b, a, c, x]
c

[c, b, a, x] no miss

[e, c, b, a]
a

[a, e, c, b]
b

[b, a, e, c]
c

[c, b, a, e] no miss

ECBs
= {e}

CRPDUCB ⇒ |UCB| = 3
CRPDECB ⇒ n = 4
CRPDUCB&ECB = min(CRPDUCB, CRPDECB)⇒ 3

I Overestimation: number of additional misses= 0 < 3

Why?
I |ECB| to evict a UCB = 2
I but, |ECB| = 1
I One single ECB is not sufficient to evict a UCB

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 10 / 22

computer science

saarland
universityImpact of the Preempting Task

on the Preempted Task (Example)

0x0a
0x0b
0x0c

[c, b, a, x]
a

[a, c, b, x]
b

[b, a, c, x]
c

[c, b, a, x] no miss

[e, c, b, a]
a

[a, e, c, b]
b

[b, a, e, c]
c

[c, b, a, e] no miss

ECBs
= {e}

CRPDUCB ⇒ |UCB| = 3
CRPDECB ⇒ n = 4
CRPDUCB&ECB = min(CRPDUCB, CRPDECB)⇒ 3

I Overestimation: number of additional misses= 0 < 3

Why?
I |ECB| to evict a UCB = 2
I but, |ECB| = 1
I One single ECB is not sufficient to evict a UCB

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 10 / 22

computer science

saarland
universityImpact of the Preempting Task

on the Preempted Task (Example)

0x0a
0x0b
0x0c

[c, b, a, x]
a

[a, c, b, x]
b

[b, a, c, x]
c

[c, b, a, x] no miss

[e, c, b, a]
a

[a, e, c, b]
b

[b, a, e, c]
c

[c, b, a, e] no miss

ECBs
= {e}

CRPDUCB ⇒ |UCB| = 3
CRPDECB ⇒ n = 4
CRPDUCB&ECB = min(CRPDUCB, CRPDECB)⇒ 3

I Overestimation: number of additional misses= 0 < 3

Why?
I |ECB| to evict a UCB = 2
I but, |ECB| = 1
I One single ECB is not sufficient to evict a UCB

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 10 / 22

computer science

saarland
universityRefinement

Determining max |ECB| s.t. no additional cache miss occur

m ∈ UCB

m is
4-resilient

m
a1
a2
a3

m

[m, , , , , , ,]

[a3, a2, a1, m, , , ,]

[m, a3, a2, a1, , , ,]

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 11 / 22

computer science

saarland
universityRefinement

Determining max |ECB| s.t. no additional cache miss occur

m ∈ UCB
m is

4-resilient

m
a1
a2
a3

m

[m, , , , , , ,]

[a3, a2, a1, m, , , ,]

[m, a3, a2, a1, , , ,]

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 11 / 22

computer science

saarland
universityResilience Analysis

Definition (l-Resilience)

A memory block m is called l-resilient at program point P, if all possible
next accesses to m that would be hits, would still be hits in case of a
preemption at P with l accesses.

preempted task

m ∈ UCB
m is

4-resilient

m
a1
a2

a3

m

[m, , , , , , ,]

[a3, e4, e3, e2, e1, a2, a1, m]

[m, a3, e4, e3, e2, e1, a2, a1]

preempting task

ECB = {e1, e2, e3, e4}

if |ECB| ≤ l then the UCB is not evicted

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 12 / 22

computer science

saarland
universityResilience Analysis

Definition (l-Resilience)

A memory block m is called l-resilient at program point P, if all possible
next accesses to m that would be hits, would still be hits in case of a
preemption at P with l accesses.

preempted task

m ∈ UCB
m is

4-resilient

m
a1
a2

a3

m

[m, , , , , , ,]

[a3, e4, e3, e2, e1, a2, a1, m]

[m, a3, e4, e3, e2, e1, a2, a1]

preempting task

ECB = {e1, e2, e3, e4}

if |ECB| ≤ l then the UCB is not evicted

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 12 / 22

computer science

saarland
universityCRPD using Resilience

CRPD (combining UCB and ECB by using resilience)

CRPD ≤ BRT × |
may contribute to CRPD︷ ︸︸ ︷

UCB︸ ︷︷ ︸
may be useful

\ {m | m is |ECB|-resilient}︸ ︷︷ ︸
must remain useful

|

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 13 / 22

computer science

saarland
universityCRPD using Resilience - Example

0x0a
0x0b
0x0c

[c, b, a, x]
a

[a, c, b, x]
b

[b, a, c, x]
c

[c, b, a, x] no miss

[e, c, b, a]
a

[a, e, c, b]
b

[b, a, e, c]
c

[c, b, a, e] no miss

ECBs
= {e}

I |ECB| = 1
I a, b and c are 1-resilient
I CRPDres

UCB&ECB = BRT × |UCB \ {m | m is |ECB|-resilient}| = 0

Instead of: CRPDUCB&ECB = min(CRPDUCB, CRPDECB) = 3× BRT
Resilience analysis leads to a more precise CRPD

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 14 / 22

computer science

saarland
universityCRPD using Resilience - Example

0x0a
0x0b
0x0c

[c, b, a, x]
a

[a, c, b, x]
b

[b, a, c, x]
c

[c, b, a, x] no miss

[e, c, b, a]
a

[a, e, c, b]
b

[b, a, e, c]
c

[c, b, a, e] no miss

ECBs
= {e}

I |ECB| = 1
I a, b and c are 1-resilient
I CRPDres

UCB&ECB = BRT × |UCB \ {m | m is |ECB|-resilient}| = 0

Instead of: CRPDUCB&ECB = min(CRPDUCB, CRPDECB) = 3× BRT
Resilience analysis leads to a more precise CRPD

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 14 / 22

computer science

saarland
universityCRPD using Resilience - Example

0x0a
0x0b
0x0c

[c, b, a, x]
a

[a, c, b, x]
b

[b, a, c, x]
c

[c, b, a, x] no miss

[e, c, b, a]
a

[a, e, c, b]
b

[b, a, e, c]
c

[c, b, a, e] no miss

ECBs
= {e}

I |ECB| = 1
I a, b and c are 1-resilient
I CRPDres

UCB&ECB = BRT × |UCB \ {m | m is |ECB|-resilient}| = 0

Instead of: CRPDUCB&ECB = min(CRPDUCB, CRPDECB) = 3× BRT
Resilience analysis leads to a more precise CRPD

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 14 / 22

computer science

saarland
universityCRPD using Resilience - Example

0x0a
0x0b
0x0c

[c, b, a, x]
a

[a, c, b, x]
b

[b, a, c, x]
c

[c, b, a, x] no miss

[e, c, b, a]
a

[a, e, c, b]
b

[b, a, e, c]
c

[c, b, a, e] no miss

ECBs
= {e}

I |ECB| = 1
I a, b and c are 1-resilient
I CRPDres

UCB&ECB = BRT × |UCB \ {m | m is |ECB|-resilient}| = 0

Instead of: CRPDUCB&ECB = min(CRPDUCB, CRPDECB) = 3× BRT

Resilience analysis leads to a more precise CRPD

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 14 / 22

computer science

saarland
universityCRPD using Resilience - Example

0x0a
0x0b
0x0c

[c, b, a, x]
a

[a, c, b, x]
b

[b, a, c, x]
c

[c, b, a, x] no miss

[e, c, b, a]
a

[a, e, c, b]
b

[b, a, e, c]
c

[c, b, a, e] no miss

ECBs
= {e}

I |ECB| = 1
I a, b and c are 1-resilient
I CRPDres

UCB&ECB = BRT × |UCB \ {m | m is |ECB|-resilient}| = 0

Instead of: CRPDUCB&ECB = min(CRPDUCB, CRPDECB) = 3× BRT
Resilience analysis leads to a more precise CRPD

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 14 / 22

computer science

saarland
universityLimitations of CRPD Estimation

Cache Policy: LRU
I FIFO and PLRU cannot be ”directly” analysed using UCB/ECB.

Architecture: Need a constant bound on the block reload time
I The number of additional misses is used to bound the interferences.

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 15 / 22

computer science

saarland
universityPredictable Multi-Core Architecture

Predictability: hard to quantify
Predictable cores are a prerequisite for predictable multi-cores
General problem: Sharing of resources

I Main memory, caches
I Busses
I I/O
I Flash memory

Sharing may be
I fundamental (necessary access to application global variables)
I incidental (processors happen to use the same bus for access to

non-shared devices)

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 16 / 22

computer science

saarland
universityPredictability on the Single-Core Level:

Caches

Several new notions regarding cache replacement policies:
Predictability:
quantitative measure of how fast information about cache state
can be gained
Competitiveness:
quantitative measure of how numbers of hits and misses of
different policies relate
Sensitivity:
quantitative measure of how the number of hits and misses are
influenced by intial cache state

Gives a sound and precise quantitative definition of predictability of
caches

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 17 / 22

computer science

saarland
universityPredictability on the Single-Core Level:

Caches

Predictability of Caches depends on their replacement policy:
Least-Recently-Used (LRU) highly predictable, precise and
efficient abstractions exist
First-In First-Out (FIFO) inherently less predictable
Pseudo Round-Robin as in Motorola ColdFire, extremely
unpredictable

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 18 / 22

computer science

saarland
universityPredictability on the Single-Core Level:

Pipelines
Classification of architectures:

Timing compositional (e. g., ARM7):
No timing anomalies present,
local worst-case behaviour safely approximates global worst-case
behaviour
Compositional with bounded effects (e. g., TriCore (probably)):
Timing anomalies but no domino effects,
local worst-case behaviour safely approximates global worst-case
behaviour up to a constant, additive factor
Non-compositional architectures (e. g., PPC 755):
Timing anomalies, domino effects,
all global paths have to be considered

from Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, IEEE TCAD, July 2009

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 19 / 22

computer science

saarland
universityPredictability of Multi-Core Architectures:

What One Should Avoid in a Multi-Core Architecture
a complex architecture, not fully-compositional:

I high complexity of the analysis
I bound on additional delays are not constant

(access to a shared resource, preemption)
a cache with a non-LRU policy

I less precise WCET bounds
I more complicated computation of less precise CRPD bounds

a unified cache
I interferences impair precision
I more complex analysis

shared bus protocol with unbounded access delay
I unbounded execution time
I no guarantees on timing constraints

frequently used shared resources
I may lead to an unschedulable system
I TDMA-like protocol: limited by idle-time

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 20 / 22

computer science

saarland
universityPROMPT

Minimise sharing in multi-processor architectures:
Interferences might be huge (bus contention, cache pollution)
Huge overestimation when analysis is possible

I Set of tasks that might be executed in parallel
I Cache contents

PROMPT (PRedictability Of Multi-Processor Timing)
Start with a generic, parameterisable architecture with predictable
(fully timing compositional) cores
Instantiate architecture for given set of applications, based on their
resource requirements

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 21 / 22

computer science

saarland
universityDesign Principles

Simplifications of components of the architecture
Elimination of interferences on shared resources:

I Wherever it is not absolutely needed
I Private resources for private uses
I Data sharing for global state

Accesses to the shared global state
I Determination of delays, or
I Cumulative analyses of WCET, bus arbiter and scheduling

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 22 / 22

computer science

saarland
universityConclusions

Preemptive systems:
I Precise analysis of cache interferences
I Requires LRU cache and constant-bounded cache access delay

Predictability: not a boolean property
I Introduction of shared resources decreases predictability but may

benefit efficiency
PROMPT:

I Predictable components of the architecture (core)
I Reduction of interferences (when possible)
I Determination of access delay

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 23 / 22

computer science

saarland
universityFurther reading - resilience

Altmeyer, S. & Burguière, C. (2009).
In Proceedings of the 21st Euromicro Conference on Real-Time Systems (ECRTS ’09) pp.
109–118, IEEE Computer Society.

Altmeyer, S., Maiza, C. & Reineke, J.
In LCTES’10.

Lee, C.-G., Hahn, J., Min, S. L., Ha, R., Hong, S., Park, C. Y., Lee, M. & Kim, C. S. (1996).
In RTSS’96 p. 264, IEEE Computer Society.

Negi, H. S., Mitra, T. & Roychoudhury, A. (2003).
In CODES+ISSS’03 ACM.

Reineke, J. (2008).
Caches in WCET Analysis.
PhD thesis, Universität des Saarlandes, Saarbrücken.

Tan, Y. & Mooney, V. (2004).
In SCOPES’04 pp. 182–199,.

Tomiyama, H. & Dutt, N. D. (2000).
In CODES’00 ACM.

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 23 / 22

computer science

saarland
universitySteps of the Design Process

1 Hierarchical privatization
I decomposition of the set of applications according to the sharing

relation on the global state
I allocation of private resources for non-shared code and state
I sound (and precise) determination of delays for accesses to the

shared global state
2 Sharing of lonely resources

I Costly lonely resources will be shared
I Access rate is low compared to CPU and memory bandwidth
I Accesses happen infrequently⇒ access delay contributes little

3 Controlled socialization
I introduction of additional sharing to reduce costs
I controlling loss of predictability

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 23 / 22

computer science

saarland
universityl-resilience analysis

(a)

0-
re

si
lie

nt
0-

re
si

lie
nt

2-
re

si
lie

nt

m

m

m

(b)
2-

re
si

lie
nt

m
is

no
tu

se
fu

l

2-
re

si
lie

nt

m

m

m

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 23 / 22

computer science

saarland
universityCPRD using ECB: Pitfall

0x08
0x09
0x0a
0x0b

[b, a, 9, 8]
8

[8, b, a, 9]
9

[9, 8, b, a]
a

[a, 9, 8, b]
b

[b, a, 9, 8] 0 misses

[e, b, a, 9]
8∗

[8, e, b, a]
9∗

[9, 8, e, b]
a∗

[a, 9, 8, e]
b∗

[b, a, 9, 8] 4 misses

ECBs
= {e}

|UCB(s)| = 4
|ECB(s)| = 1
n = 4
number of additional misses= 4

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 23 / 22

computer science

saarland
universityUpper-bound on the CRPD - direct-mapped caches

using UCB [Lee et al., 1996]:

CRPDUCB = BRT · |{si | ∃m ∈ UCB : m mod c = si}|

using ECB [Tomiyama & Dutt, 2000]:

CRPDECB = BRT · |{si | ∃m ∈ ECB : m mod c = si}|

using UCB and ECB [Negi et al., 2003, Tan & Mooney, 2004]:

CRPDUCB&ECB = BRT · |{si | ∃m ∈ UCB : m mod c = si

∧∃m′ ∈ ECB : m′ mod c = si}|

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 23 / 22

computer science

saarland
universityCRPD for FIFO: Pitfalls

[b, a]
a

[b, a]
e∗

[e, b]
b

[e, b]
c∗

[c, e]
e

[c, e] 2 misses

[x, b]
a∗

[a, x]
e∗

[e, a]
b∗

[b, e]
c∗

[c, b]
e∗

[e, c] 5 misses

ECBs
= {x}

|UCB(s)| = 2
|ECB(s)| = 1
n = 2
But: number of additional misses= 3

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 23 / 22

computer science

saarland
universityCRPD for FIFO: Pitfalls

[b, a]
a

[b, a]
e∗

[e, b]
b

[e, b]
c∗

[c, e]
e

[c, e] 2 misses

[x, b]
a∗

[a, x]
e∗

[e, a]
b∗

[b, e]
c∗

[c, b]
e∗

[e, c] 5 misses

ECBs
= {x}

|UCB(s)| = 2
|ECB(s)| = 1
n = 2
But: number of additional misses= 3

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 22 / 22

computer science

saarland
universityCRPD for PLRU: Pitfalls

1

1 1

a b c d

d 0

1 0

a b c d

b 1

0 0

a b c d

c 0

0 1

a b c d

b 1

0 1

a b c d

a 1

1 1

a b c d

d 0

1 0

a b c d

0 misses

1

0 0

a y c x

d* 0

0 1

a y d x

b* 1

1 1

b y d x

c* 0

1 0

b y d c

b 1

1 0

b y d c

a* 0

1 1

b y a c

d* 1

0 1

b d a c

5 misses

ECBs
= {x, y}

|UCB(s)| = 4
|ECB(s)| = 2
n = 4
But: number of additional misses= 5

Claire Maiza Static Cache Analysis and Multi-Core LIP6 2010 22 / 22

