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Application domain: the 
SoftWare Defined Radio 

RF application trend : 
multistndard transievers 
  
Frequency definig components: 

 filters, oscillators 
 
Way to achieve reconfigurability: 

 - frequency tunning 
 - switching 

 
MEMS technology is promising 
for the both. 
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Application domain: the 
SoftWare Defined Radio 

Hisory 
MEMS  metal-to-metal DC-60 GHz switch: Rockwell Science Center, 1995 
 
MEMS Capacitive 10-120 GHz switch : Texas Instruments, 1995 
 
1998 : research in MEMS RF area is very active in american academic 
laboratories (Berkeley, UCLA, Michigan, MIT…) 
 
2001 : more that 30 companies working in the area, including Motorola, AD,  
Samsung, STM, … 
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Application domain: the 
SoftWare Defined Radio 

Four distinct areas : 
RF MEMS switches, vacastors and inductors : DC-120 GHz 
 
Micromachined hyperfrequency components: transmission lines, high-Q 
resonators, filter, antenna (12-200 GHz). No mobile parts, no operation in 
mechanical domain. Not a truly MEMS devices, but using technologies 
similar with MEMS devices.  
 
FBAR (thin Film Bulk Acoustic Resonators), filters : integrable very high Q 
filters/resonators for <3 GHz applications, essentially in wireless 
communications 
 
Mechanical resonators based RF resonators and filters : promising but still 
marginal in RF applications     
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RF switches : MEMS vs Solid-
state 
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Capacitive switches 
The most efficient and promising, since no mechanical 
 contact : a large lifetime 
Drawbacks : efficient only at high frequencies, limited insulation 
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Capacitive switches 
Typical parameters :  

 dielectric thickness 1000-1500 Å 
 Dielectric constant : 5.0-7.6  
 Bridge height (g) : 1.5-5 µm,  
 length L : 250-400 µm,  
 width W : 25-180 mm 

mm-wave switches :  
 capacitance : 35fF/3 pF  
 parasitic inductance 6-12 pH 
 series resistance : 0.2-0.3 Ohms 

X-band switches :  
 Capacitance : 70 fF/5.6 pF, 
 inductance 4-5 pH,  
 resistance 0.1-0.2 Ohms 

Performances : 
- The resonance frequency  

� 

f0 = 1
2π

1
LC

Cutoff frequency : the 
frequency where the 
capacitance ratio of the off 
(up-state) and on (down-
state) degrades to unity :  

� 

fc = 1
2πCuRs
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Capacitive switches 
• Up-capacitance : the dielectric layer can be neglected 

• Tens of fF 

• Holes in the upper membrane : needed for the releasing 
 of the mobile part 

• Holes : 4-6 mm diameter, spaced by 5-6 mm period. 

• Typical gap : 3-4 mm 

• The holes don�t affect the up-state capacitance: fringe field 
• (Dh<3g : the up capacitance is not affected) 
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Capacitive switches 
•  Down capacitance : defined by the dielectric (thickness, 
dielectric constant). 
  
•  Should be as high as possible, however, limited by the  
Minimal thickness of dielectric (~1000-1500 Å) which should  
support the actuation voltage (20-50 V) 
 
Roughness of the surface : a degradation of the down-capactiance 
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DC-contact shunt switches 
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DC-contact series switches 
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DC-contact series switches 
Relevant parameters:  

 Up-state capacitance  
 Contact series resistance 
 Inductance  

Gold-to-gold contact : 0.1 Ohms for applied force of 
100-500 µN, contact area of 20 µm2, 
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MEMS switches and pull-in 
phenomenon 

•  Two parameters: pull-in voltage and hold-down 
voltage 

•  Hysteretis characteristic x(V)  
•  Exercice: calculate the pull-in voltage and the pull-

down voltage if W=100µm, w=80 µm, k=30 N/m, 
td=0.1 µm, eps=7. k is supposed to be constant 

•  Calculate the contact force in down position 
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MEMS switches contact 
forces 

•  The contact force: may be different from 
the pull-in force 
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Examples of RF switches 

•  Raytheon capacitive shunt switch 
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Examples of RF switches 
Univ. Michigan MEMS capacitive shunt 

switch 
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Examples of RF switches 

Univ. Michigan MEMS capacitive shunt 
switch 

19 

Liquid Metal MEMS switch 

•  Drawback of the ohmic switches :  
–  Lifetime : up to 100 billions of cycles, however, 

doubts exist about their long-term reliability 
–  Two common failure mecanism :  

•  Dielectric charging 
•  Contact degradation 
•  Causes: arcing, welding at the solld-solid contact  

–  One of the solutions : contact based on liquid 
metal 
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Liquid Metal MEMS switch 

•  Idea of LM swich : the contact electrodes are 
coated with a liquid metal layer (mercury, 
gallium, galinstan…), or the contact is 
achieved with a droplet of liquid metal 

•  The contact quality is better (no bouncing), 
the solid contact supports are less damaged 

•  The switch lifetime is much greater  
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Liquid Metal MEMS switch 

Liquid metals :  
•  There is only 5 chemical elements liquid at 

the ambiant temperature : Mercury, Gallium, 
Cesium, Francium and Bromine 

•  Three materials used in switches: mercury, 
gallium and gallistan (a gallium-based alloy) 
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Liquid Metal MEMS switch 
Mercury:  
•  Hg, discovered around 500 B.C. 
•  Melting point :-38,84°C, a fair (not excellent) thermal 

and electrical conductor 
•  Boils at 357° 
•  The surface tension : 485 mN/M at room temperature 
•  Very toxic, use highly restricted over past decades  
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Liquid Metal MEMS switch 
Gallium:  
•  Ga, Discovered in 1875 by Lecoq de Boisbaudran  

(Gallium <=Gallus=Lecoq). 
•  Melting point :29,77 °C 
•  Boils at 2205°C 
•  The highes surface tension : 680 mN/M at melting 

point 
•  Very agressive (attack nearly every metals) 
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Liquid Metal MEMS switch 
Galinstan:  
•  68.5% gallium, 21.5% indium, 10% tin,  
•  The name: Gal + In + Stan (stannum = lat. of tin) 
•  Widely used for mercuryless thermometers 
•  Nontoxic 
•  Very promising material for swithes 
•  Good conductor (better thant mercury) 
•  Melting point : -19°C 
•  Boiling point: >1300°C 
•  Easily wet and adheres to most surfaces 
•  Gallium oxide coat : prevents from the wetting  
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Liquid Metal MEMS switch 
LM deposition : a challenging task  
•   The goal : to deposit a micrometer-size droplet 
•  Complicated because of high surface tension 
•  Mercury : slective condensation of mercury vapor on a gold plate 
•  Gallium and Gallium Alloys : the lowest vapor pressure among metals 

–  Very difficult to evaporate 
–  Must be heated to 750°C 
–  Screen printing technology 
(Truong, 2000)  
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Electrostatically driven 
microcantilever-based 
mercury contact (1996) 

-  Shaped electrodes  
-  Bumpers prevent the contact with electrodes 
-  Mercury droplet captured at the contact point 
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Electrostatically driven 
microcantilever-based 
mercury contact (1996) 

-  Shaped electrodes  
-  Bumpers prevent the contact with electrodes 
-  Mercury droplet captured at the contact point 
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Electrostatically driven comb-
drive-based mercury contact 

switch (1998) 
-  Comb-driven electrode,  
-  Back (bottom) transducer increases the restoring force 
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Electrostatically driven comb-
drive-based mercury contact 

switch (1998) 
-  Comb-driven electrode,  
-  Back (bottom) transducer increases the restoring force 
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Electrostatically driven comb-
drive-based mercury contact 

switch (1998) 
-  Actuation voltage : 35 V DC 
-  4 µm mobile contact travel 
-  4 Hz actuation frequency (?)  
-  11 mA max. switching current 
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LM-actuaded switches 
•  The earliest LM-actuated switch (Simon et al., 1996) : 

thermal vapor buble actuated LM microrelay 
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LM-actuaded switches 
•  The earliest LM-actuated switch (Simon et al., 1996) : 

thermal vapor buble actuated LM microrelay 
•  Possible canal profiles 
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LM-actuaded switches 
•  The earliest LM-actuated switch 

(Simon et al., 1996) : thermal 
vapor buble actuated LM 
microrelay 

•  Photo of the fabricated device 
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LM-actuaded switches 
•  Thermally actuated LM (2000, 

Kondoh et al.) 
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LM-actuaded switches 
•  Thermally actuated LM (2000, 

Kondoh et al.) 
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LM-actuaded switches 
•  Electrostatically actuated LM 

droplet : 2002, Kim et al. 

Actuating force : 6.7 
µN for a 300 µm 
diameter droplet  

Actuation voltage: 
100-150 V DC 

Frequency : 1 Hz 
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LM-actuaded switches 
•  Electrostatically actuated LM 

droplet : planar design by Shen 
et al., 2006 

Actuation voltage : 15V 
 
Stability issue : only 3g 
stability 
 
With 80 V DC actuation  
voltage, 300g stability 
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LM based MEMS switches 
•  Promising field, but many 

material issues,  
•  The state of development is 

embrionic 
•  Further R&D are required 
•  A key technology : a low 

temperature hermetic packaging 
in indert environment  
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RF MEMS resonators 

 
 

Electrical vs mechanical oscillators (2012) 

Main applications : oscillators and filters 
 
Filters: BAW resonators/filters (Bulk Acoustic Wave)  
Oscillators: integrated frequency reference generator 
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RF MEMS resonators 

 
 

A typical HF clamped-clamped beam resonator geometry  
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RF MEMS resonators 

 
 

Travaux de Clark T.-C. Nguyen (Berkley) 
http://www.eecs.berkeley.edu/~ctnguyen  
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RF MEMS resonators 

 
 

Travaux de Clark T.-C. Nguyen 
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RF MEMS resonators 

 
 

A typical HF clamped-clamped beam resonator geometry  
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RF MEMS resonators 

 
 

A typical HF clamped-clamped beam resonator geometry (2)  
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RF MEMS resonators 

 
 

Main dissipation mechanism : dissipation in anchors 
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RF MEMS resonators 

 
 

Main dissipation mechanism : dissipation in anchors 
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RF MEMS resonators 

 
 

Main dissipation mechanism : dissipation in anchors 

48 

RF MEMS resonators 

 
 

The solution : clamp the vibrating structure in the fixed vibration 
points. Example : a free-free vibrating beam 
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RF MEMS resonators 

 
 

The solution : clamp the vibrating structure in the fixed vibration 
points. Example : a free-free vibrating beam (K. Wang et al., 2000) 
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RF MEMS resonators 

 
 

The solution : clamp the vibrating structure in the fixed vibration 
points. Example : a free-free vibrating beam (K. Wang et al., 2000) 
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RF MEMS resonators 

 
 

 Post fabrication gap reduction (K. Wang et al., 2000) 
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RF MEMS resonators 

 
 

Parameters of the fabricated free-free beam resonators 
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RF MEMS resonators 

 
 

Parameters of the fabricated free-free beam resonators 
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RF MEMS resonators 

 
 

10 MHz resonators with post-fabrication gap adjustment  
 (Galayko et al., 2002)  
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RF MEMS resonators 

 
 

10 MHz resonators with post-fabrication gap adjustment  
 (Galayko et al., 2002)  
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RF MEMS resonators 

 
 

10 MHz resonators with post-fabrication gap adjustment  
 (Galayko et al., 2002)  

Dimensions :  
 W=1.8 !m,  
 L=25…100!m  

  h=15 !m 
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RF MEMS resonators 

 
 

 Very high frequency MEMS resonators: the volume / acoustic 
 waves 

Y. W. Lin et al., 2004 
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RF MEMS resonators 

 
 

 Very high frequency MEMS resonators: the volume / acoustic 
 waves 

J. R. Clark et al., 2005 
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RF MEMS resonators 

 
 

 Very high frequency MEMS resonators: the volume / acoustic 
 waves 

J. R. Clark et al., 2005 : performances 
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RF MEMS resonators 

 
 

 Very high frequency MEMS resonators: the volume / acoustic 
 waves 

J. R. Clark et al., 2005 : performances 
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RF MEMS resonators 

 
 

 Very high frequency MEMS resonators: the volume / acoustic 
 waves 

S. S. Li et al., 2004 : 
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RF MEMS resonators 

 
 

 Very high frequency MEMS resonators: the volume / acoustic 
 waves 

S. S. Li et al., 2004 : 
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RF MEMS resonators 

 
 

Importance of gap : the impedance at resonance 
is proportional to gap4 

Special gap reducing techniques are emploied 
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RF MEMS resonators 

 
 

Summary of MEMS resonator evolution  
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RF MEMS resonators 

 
 

Summary of MEMS resonator evolution  
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RF MEMS resonators 

 
 

Association of MEMS resonators : MEMS filters 
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RF MEMS resonators 

 
 

Association of MEMS resonators : high order  
analog MEMS filters 
 
Poor drive power capability and high series resistance ! 
 
Low frequency 
 
Can�t compete with digital signal processing techniques 

     (digital filters) 
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Another RF MEMS 
components  

 
 

Micromachined passive elements : inductors, microstrips 
 
Phase shifters  
 
Variable capacitors  
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