
MEMS RF: a review

Master SESI,
UE MEMS,
Cours 3
Dimitri Galayko

Outline

- Introduction
- MEMS RF switches
- Liquid Metal RF switches
- MEMS Resonators

Application domain: the SoftWare Defined Radio

RF application trend : multistndard transievers

Frequency definig components: filters, oscillators

Way to achieve reconfigurability:

- frequency tunning
- switching

MEMS technology is promising for the both.

3

Application domain: the SoftWare Defined Radio

Hisory

MEMS metal-to-metal DC-60 GHz switch: Rockwell Science Center, 1995

MEMS Capacitive 10-120 GHz switch: Texas Instruments, 1995

1998 : research in MEMS RF area is very active in american academic laboratories (Berkeley, UCLA, Michigan, MIT...)

2001 : more that 30 companies working in the area, including Motorola, AD, Samsung, STM, \dots

Application domain: the SoftWare Defined Radio

Four distinct areas :

RF MEMS switches, vacastors and inductors: DC-120 GHz

Micromachined hyperfrequency components: transmission lines, high-Q resonators, filter, antenna (12-200 GHz). No mobile parts, no operation in mechanical domain. Not a truly MEMS devices, but using technologies similar with MEMS devices.

FBAR (thin Film Bulk Acoustic Resonators), filters: integrable very high Q filters/resonators for <3 GHz applications, essentially in wireless communications

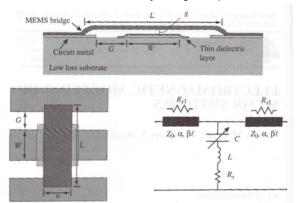
Mechanical resonators based RF resonators and filters : promising but still marginal in RF applications

5

RF switches : MEMS vs Solidstate

TABLE 1.2. Performance Comparison of FETs, PIN Diode, and RF MEMS Electrostatic Switches

Electrostatic Direction				
Parameter	RF MEMS	PIN	FET	
Voltage (V)	20-80	±3-5	3-5	
Current (mA)	0	3-20	0	
Power consumption ^a (mW)	0.05 - 0.1	5-100	0.05 - 0.1	
Switching time	1-300 μs	1-100 ns	1-100 ns	
C_{up} (series) (fF)	1-6	40-80	70-140	
R_s (series) (Ω)	0.5-2	2-4	4-6	
Capacitance ratio ^b	$40-500^{b}$	10	n/a	
Cutoff frequency (THz)	20-80	1-4	0.5 - 2	
Isolation (1–10 GHz)	Very high	High	Medium	
Isolation (10-40 GHz)	Very high	Medium	Low	
Isolation (60–100 GHz)	High	Medium	None	
Loss (1-100 GHz) (dB)	0.05 - 0.2	0.3-1.2	0.4 - 2.5	
Power handling (W)	<1	<10	<10	
Third-order intercept point (dBm)	+66-80	+27-45	+27-45	


[&]quot;Includes voltage upconverter or drive circuitry.

Capacitive switches

The most efficient and promising, since no mechanical

contact : a large lifetime

Drawbacks: efficient only at high frequencies, limited insulation

7

Capacitive switches

Typical parameters :

dielectric thickness 1000-1500 Å Dielectric constant : 5.0-7.6 Bridge height (g) : 1.5-5 μm,

length L : 250-400 μ m, width W : 25-180 mm

mm-wave switches:

capacitance: 35fF/3 pF parasitic inductance 6-12 pH series resistance: 0.2-0.3 Ohms

X-band switches:

Capacitance : 70 fF/5.6 pF, inductance 4-5 pH,

resistance 0.1-0.2 Ohms

Performances:

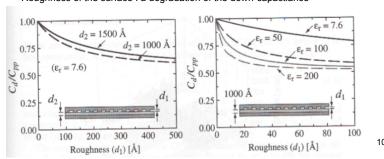
- The resonance frequency

$$f_0 = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

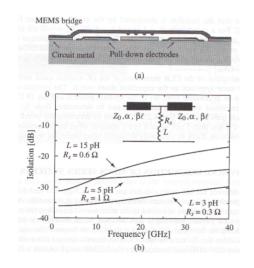
Cutoff frequency: the frequency where the capacitance ratio of the off (up-state) and on (downstate) degrades to unity:

$$f_c = \frac{1}{2\pi C_u R_s}$$

^bCapacitive switch only. A ratio of 500 is achieved with high- ε_r dielectrics.

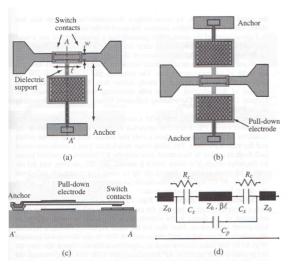

Capacitive switches

- •Up-capacitance : the dielectric layer can be neglected
- •Tens of fF
- •Holes in the upper membrane : needed for the releasing of the mobile part
- •Holes: 4-6 mm diameter, spaced by 5-6 mm period.
- •Typical gap: 3-4 mm
- •The holes don't affect the up-state capacitance: fringe field
- •(D_h<3g: the up capacitance is not affected)


Capacitive switches

- Down capacitance : defined by the dielectric (thickness, dielectric constant).
- Should be as high as possible, however, limited by the Minimal thickness of dielectric (~1000-1500 Å) which should support the actuation voltage (20-50 V)

Roughness of the surface: a degradation of the down-capactiance

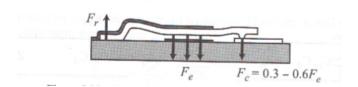


DC-contact shunt switches

11

DC-contact series switches

DC-contact series switches

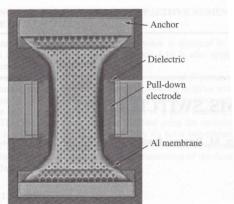

Relevant parameters:

Up-state capacitance Contact series resistance Inductance

Gold-to-gold contact : 0.1 Ohms for applied force of 100-500 μN , contact area of 20 μm^2 ,

MEMS switches contact forces

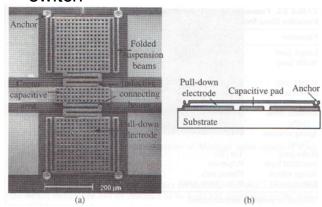
 The contact force: may be different from the pull-in force



MEMS switches and pull-in phenomenon

- Two parameters: pull-in voltage and hold-down voltage
- Hysteretis characteristic x(V)
- Exercice: calculate the pull-in voltage and the pull-down voltage if W=100μm, w=80 μm, k=30 N/m, t_d=0.1 μm, eps=7. k is supposed to be constant
- · Calculate the contact force in down position

Examples of RF switches


Raytheon capacitive shunt switch

13

Examples of RF switches

Univ. Michigan MEMS capacitive shunt switch

17

Examples of RF switches

Univ. Michigan MEMS capacitive shunt switch TABLE 5.2. Parameters for the University of Michigan Low-Voltage MEM

Parameter	Value	Parameter	Value	
Length [µm]	500-700	Actuation area [µm²]	200 × 200 (×2)	
Width [µm]	200-250	Actuation voltage ^a [V]	6–20	
Height [µm]	4-5	Switch time ^a [µs]	20-40 (D)	
Membrane type	Nickel	C_d [pF]	1-3	
Thickness [µm]	2-2.5	Capacitive ratio	30-50	
Residual stress [MPa]	20–100	Inductance [pH]	1–2	
Spring constant [N/m]	1–10	Resistance $[\Omega]$	0.2-0.3	
Holes [µm]	Yes (10)	Isolation [dB]	-25 (30 GHz)	
Sacrificial layer	Polyimide	Intermodulation	N/A	
Bridge release Dielectric (Å)	Plasma etch Si ₃ N ₄ (1000–1500)	Loss [dB]	-0.1 (1-40 GHz	

Liquid Metal MEMS switch

- · Drawback of the ohmic switches:
 - Lifetime: up to 100 billions of cycles, however, doubts exist about their long-term reliability
 - Two common failure mecanism :
 - Dielectric charging
 - Contact degradation
 - · Causes: arcing, welding at the solld-solid contact
 - One of the solutions : contact based on liquid metal

19

Liquid Metal MEMS switch

- Idea of LM swich: the contact electrodes are coated with a liquid metal layer (mercury, gallium, galinstan...), or the contact is achieved with a droplet of liquid metal
- The contact quality is better (no bouncing), the solid contact supports are less damaged
- The switch lifetime is much greater

Liquid Metal MEMS switch

Liquid metals:

- There is only 5 chemical elements liquid at the ambiant temperature: Mercury, Gallium, Cesium, Francium and Bromine
- Three materials used in switches: mercury, gallium and gallistan (a gallium-based alloy)

21

Liquid Metal MEMS switch

Mercury:

- Hg, discovered around 500 B.C.
- Melting point :-38,84°C, a fair (not excellent) thermal and electrical conductor
- Boils at 357°
- The surface tension: 485 mN/M at room temperature
- Very toxic, use highly restricted over past decades

Liquid Metal MEMS switch

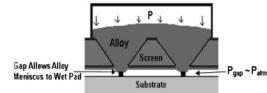
Gallium:

- Ga, Discovered in 1875 by Lecoq de Boisbaudran (Gallium <=Gallus=Lecoq).
- Melting point :29,77 °C
- Boils at 2205°C
- The highes surface tension : 680 mN/M at melting point
- Very agressive (attack nearly every metals)

23

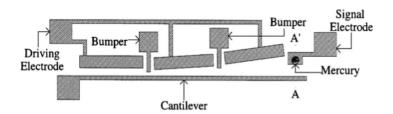
Liquid Metal MEMS switch

Galinstan:


- 68.5% gallium, 21.5% indium, 10% tin,
- The name: Gal + In + Stan (stannum = lat. of tin)
- Widely used for mercuryless thermometers
- Nontoxic
- Very promising material for swithes
- Good conductor (better thant mercury)
- Melting point : -19°C
- Boiling point: >1300°C
- · Easily wet and adheres to most surfaces
- · Gallium oxide coat : prevents from the wetting

22

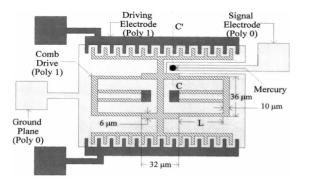
Liquid Metal MEMS switch


LM deposition: a challenging task

- The goal : to deposit a micrometer-size droplet
- · Complicated because of high surface tension
- · Mercury: slective condensation of mercury vapor on a gold plate
- · Gallium and Gallium Alloys: the lowest vapor pressure among metals
 - Very difficult to evaporate
 - Must be heated to 750°C
 - Screen printing technology (Truong, 2000)

Electrostatically driven microcantilever-based mercury contact (1996)

- Shaped electrodes
- Bumpers prevent the contact with electrodes
- Mercury droplet captured at the contact point


Electrostatically driven microcantilever-based mercury contact (1996)

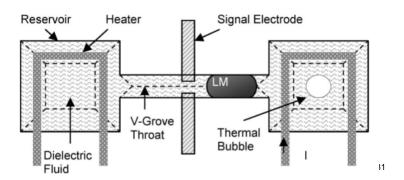
- Shaped electrodes
- Bumpers prevent the contact with electrodes
- Mercury droplet captured at the contact point

Electrostatically driven combdrive-based mercury contact switch (1998)

- Comb-driven electrode,
- Back (bottom) transducer increases the restoring force

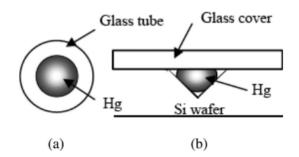
Electrostatically driven combdrive-based mercury contact switch (1998)

- Comb-driven electrode,
- Back (bottom) transducer increases the restoring force

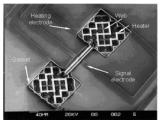

29

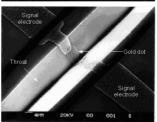
Electrostatically driven combdrive-based mercury contact switch (1998)

- Actuation voltage: 35 V DC
- 4 μm mobile contact travel
- 4 Hz actuation frequency (?)
- 11 mA max. switching current

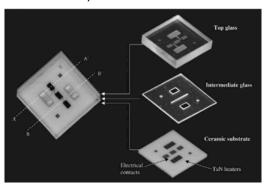

LM-actuaded switches

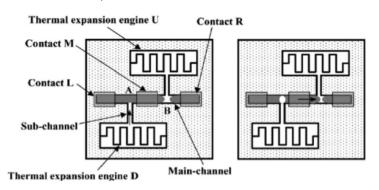
 The earliest LM-actuated switch (Simon et al., 1996): thermal vapor buble actuated LM microrelay


LM-actuaded switches


- The earliest LM-actuated switch (Simon et al., 1996) : thermal vapor buble actuated LM microrelay
- Possible canal profiles

LM-actuaded switches


- The earliest LM-actuated switch (Simon et al., 1996): thermal vapor buble actuated LM microrelay
- · Photo of the fabricated device


LM-actuaded switches

• Thermally actuated LM (2000, Kondoh et al.)

LM-actuaded switches

 Thermally actuated LM (2000, Kondoh et al.)


LM-actuaded switches

· Electrostatically actuated LM droplet: 2002, Kim et al.

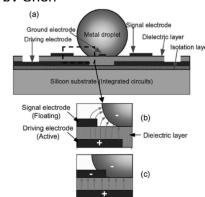
Actuating force: 6.7 μN for a 300 μm diameter droplet

Actuation voltage: 100-150 V DC

Frequency: 1 Hz

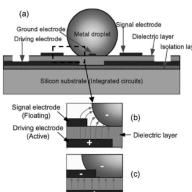
LM-actuaded switches

 Electrostatically actuated LM droplet: planar design by Shen


et al., 2006

Actuation voltage: 15V

Stability issue : only 3g


stability

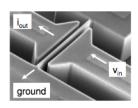
With 80 V DC actuation voltage, 300g stability

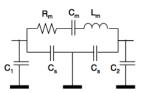
LM based MEMS switches

- Promising field, but many material issues,
- The state of developme embrionic
- Further R&D are require _
- A key technology: a low temperature hermetic p in indert environment

RF MEMS resonators

Main applications : oscillators and filters

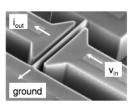

Filters: BAW resonators/filters (Bulk Acoustic Wave) Oscillators: integrated frequency reference generator

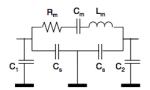

Electrical vs mechanical oscillators (2012)

Resonator	Accuracy	Noise	Size	System integration
technology	df/f ₀ (ppm)	FoM ₂	LxWxH(mm)	
mechanical	<10	~130	>1.6x1.2x0.35	Bulky hermetic package Non-CMOS compatible
electrical	>100	~90	<0.5x0.5X0	•Standard plastic package •CMOS design

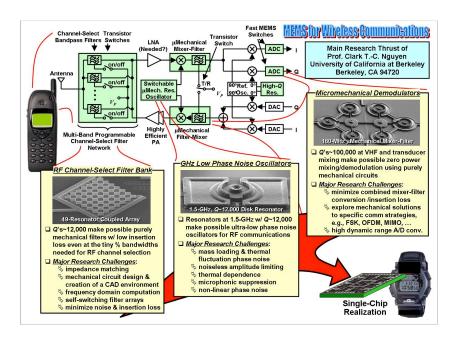
RF MEMS resonators

A typical HF clamped-clamped beam resonator geometry

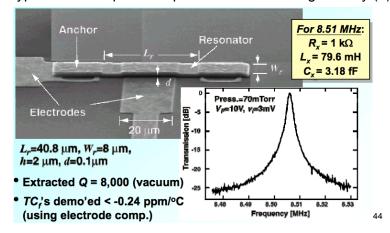




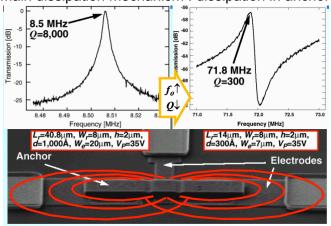
Travaux de Clark T.-C. Nguyen (Berkley) http://www.eecs.berkeley.edu/~ctnguyen


RF MEMS resonators

A typical HF clamped-clamped beam resonator geometry

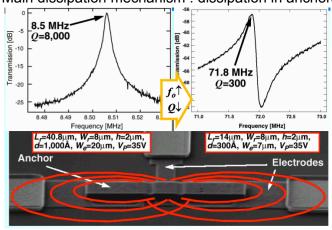


41 43



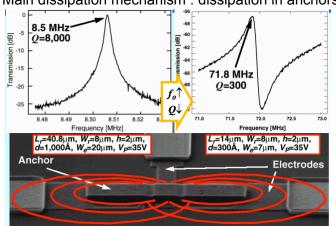
RF MEMS resonators

A typical HF clamped-clamped beam resonator geometry (2)

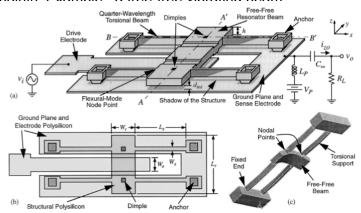


Main dissipation mechanism: dissipation in anchors

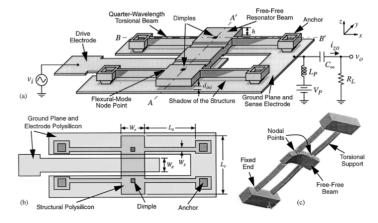
RF MEMS resonators


Main dissipation mechanism: dissipation in anchors

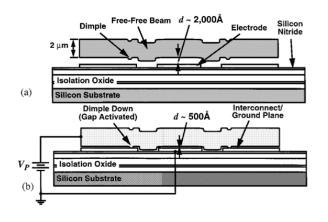
47


RF MEMS resonators

Main dissipation mechanism: dissipation in anchors

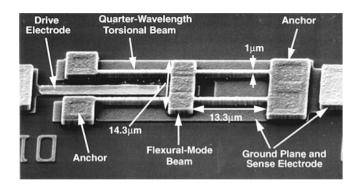

RF MEMS resonators

The solution : clamp the vibrating structure in the fixed vibration points. Example : a free-free vibrating beam


46

The solution : clamp the vibrating structure in the fixed vibration points. Example : a free-free vibrating beam (K. Wang et al., 2000)

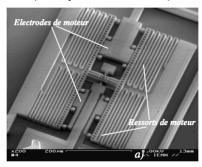
RF MEMS resonators

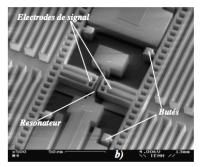

Post fabrication gap reduction (K. Wang et al., 2000)

51

RF MEMS resonators

The solution : clamp the vibrating structure in the fixed vibration points. Example : a free-free vibrating beam (K. Wang et al., 2000)

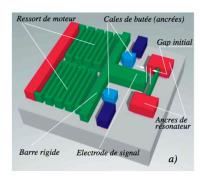


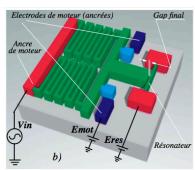

RF MEMS resonators

Parameters of the fabricated free-free beam resonators

	Row	Dosamatas	Source	Target Frequency				Unit
	No.	Parameter	Source	30 MHz	50 MHz	70 MHz	90 MHz	Unit
Designed/Fabricated/Given	1	Resonator Beam Length, L_r	layout	23.2	17.8	14.9	13.1	μm
	2	Resonator Beam Width, Wr	layout	10	10	6	6	μm
	3	Supporting Beam Length, L_s	layout	30.6	18.4	13.1	10.3	μm
	4	Supporting Beam Width, W_s	layout	1	1	1	1	μm
	5	Node Location 1, L_{n1}	layout	5.2	4	3.3	2.9	μm
ed/c	6	Node Location 2, L_{n2}	layout	18	13.8	11.6	10.2	μm
icat	7	Polysilicon Film Thickness, h	measured	2.05	2.05	2.05	2.05	μm
abr	8	Electrode Width, We	layout	7.4	4.5	4	2.8	μm
ed.	9	Typical Initial Physical Gap, dini	measured	1,600	1,600	1,600	1,600	Å
ig	10	Typical Physical Dimple Height, d	measured	1,230	1,230	1,230	1,230	Å
Des	11	Torsion Constant, γ	Eq. (18)	0.469	0.469	0.469	0.469	μm ⁴
	12	Young's Modulus, E	measured	150	150	150	150	GPa
	13	Poisson Ratio, v	[19]	0.226	0.226	0.226	0.226	_
	14	Freq. Modification Factor, ζ	chosen	1	1	1	1	_
=	15	Measured Frequency, fo	measured	31.51	50.35	71.49	92.25	MHz
nrec	16	Measured Quality Factor, Q	measured	8,140	8,430	8,250	7,450	_
Measured	17	V_P Used in Measurement, V_{Pm}	measured	22	86	126	76	V
Σ	18	Measured Series Resistance, R_z	meas./Eq. (24)	31.1	10.7	34.9	167.0	kΩ
	19	Timoshenko Freq., $f_o(V_p=V_{Pm})$	Eq. (9), (5)	30.63	50.83	71.39	90.99	MHz
_	20	Timoshenko Freq., $f_o(V_p=0V)$	Eq. (5)	30.70	51.16	71.64	91.07	MHz
inec	21	Euler-Bernoulli Freq., $f_o(V_P=V_{Pm})$	Eq. (9), (1)	31.62	53.51	76.57	99.29	MHz
em	22	Euler-Bernoulli Freq., $f_o(V_P=0V)$	Eq. (1)	31.68	53.82	76.81	99.36	MHz
Det	23	Calculated Series Resistance, Rz	Eq. (19)	30.9	10.8	34.8	168.9	kΩ
Analytically Determined	24	Adjusted/Extrapolated Gap, d	Eq. (19)	1,300	1,510	1,920	1,780	Å
	25	Resonator Stiffness, $k_r(y=L_r/2)$	Eq. (13)	27,423	57,926	57,390	81,965	N/m
naly	26	Resonator Mass, $m_r(y=L_r/2)$	Eq. (12)	7.40×10 ⁻¹³	5.68×10 ⁻¹³	2.85×10 ⁻¹³	2.51×10 ⁻¹³	kg
¥	27	Dimple-Down Voltage, V _d	Eq. (21)	9.2	25.3	57.4	98.2	V
	28	Catastrophic Pull-In Voltage, V _c	Eq. (11) = 1	232	521	1024	1262	V

10 MHz resonators with post-fabrication gap adjustment (Galayko et al., 2002)

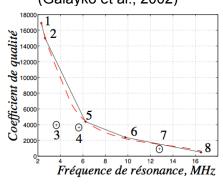




55

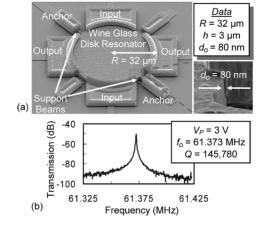
RF MEMS resonators

10 MHz resonators with post-fabrication gap adjustment (Galayko et al., 2002)



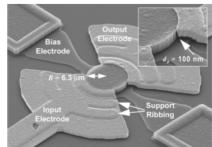
53

RF MEMS resonators


10 MHz resonators with post-fabrication gap adjustment (Galayko et al., 2002)

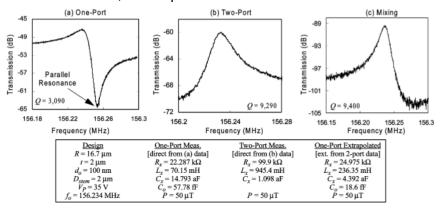
Dimensions : W=1.8 ⋈m, L=25...100 ⋈m h=15 ⋈m

Very high frequency MEMS resonators: the volume / acoustic waves


Y. W. Lin et al., 2004

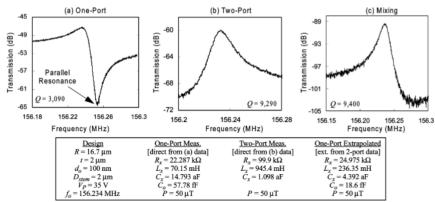
RF MEMS resonators

Very high frequency MEMS resonators: the volume / acoustic waves

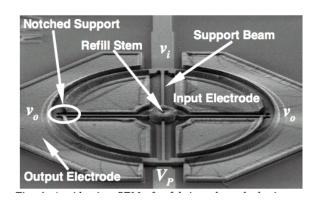

J. R. Clark et al., 2005

RF MEMS resonators

Very high frequency MEMS resonators: the volume / acoustic waves


J. R. Clark et al., 2005 : performances

RF MEMS resonators


Very high frequency MEMS resonators: the volume / acoustic waves

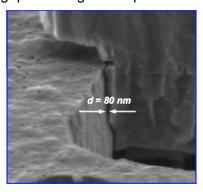
J. R. Clark et al., 2005 : performances

Very high frequency MEMS resonators: the volume / acoustic waves

S. S. Li et al., 2004:

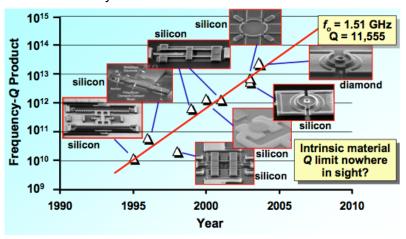
61

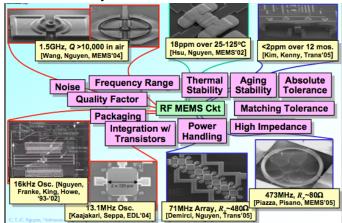
RF MEMS resonators


Very high frequency MEMS resonators: the volume / acoustic waves

S. S. Li et al., 2004:

RF MEMS resonators


Importance of gap: the impedance at resonance is proportional to gap⁴
Special gap reducing techniques are emploied


63

RF MEMS resonators

Summary of MEMS resonator evolution

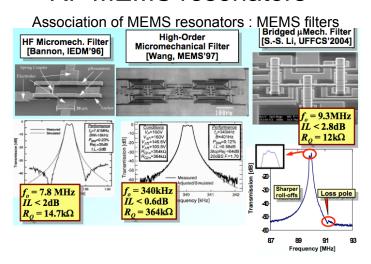
Summary of MEMS resonator evolution

Association of MEMS resonators : high order

RF MEMS resonators

analog MEMS filters

Poor drive power capability and high series resistance!


Low frequency

Can't compete with digital signal processing techniques (digital filters)

67

RF MEMS resonators

65

Another RF MEMS components

Micromachined passive elements: inductors, microstrips

Phase shifters

Variable capacitors

Litterature

- (RF Switches) Gabriel M. Rebeiz, RF MEMS: Theory Design and Technology, Wiley, 2003
- (MEMS resonators)J. T. M. van Beek et al., A review of MEMS oscillators for frequency reference and timing applications, Journal of Micromechanics and Microengineering, 2012, 22, 013001
- (Liquid RF switches) P. Sen et al., Mircoscale Liquid-Metal Switches - A Review, IEEE Transaction on Industrial Electronics, vol. 56, no. 4, april 2009
- (Mems resonators) Clark T.-C. Nguyen group publications: http://www.eecs.berkeley.edu/~ctnguyen
- (MEMS resonators) PhD dissertation of D. Galayko , 2002