Capteurs inertiels à base de MEMS

Dimitri Galayko

Principe de capteur inertiel

- Les capteurs inertiels caractérisent des phénomènes liés à déplacement à vitesse variable (accélération) et à la gravitation.
- Exemple : accéléromètre (voiture, avion...), gyroscope (orientation du vecteur de champ gravitationnel)
- Au cœur de capteur inertiel : une masse

Sommaire

- Principe de fonctionnement des capteurs inertiels
- Composantes des capteurs inertiels:
 - Résonateurs
 - Transducteurs
 - Interfaces électriques
- Présentation du mini-projet « conception d'accéléromètre »

2

Principe de capteur inertiel

• Une masse : une source de la force d'entrée

- Capteur de gravitation: **F**=m**g**
- Capteur d'accélération : F=-ma
- Les capteurs inertiels mesurent la force F

Principe de capteur inertiel

- Comment mesurer une force ?
 - L'associer à un ressort
 - Mesurer la déformation du ressort (principe d'une balance)

Principe de capteur inertiel

• Est-ce un résonateur ?

- Oui ! Sachant que $\omega_0 = \sqrt{k/m}$, on a x= a_{ext}/ω_0^2
- Plus ω_0 est grand, plus x est petit

Principe de capteur inertiel

- Bruit dans les accéléromètres: limites physiques à la resolution
- Dans une bande de 1 Hz, le r.m.s. de la force de bruit: $F_n = \sqrt{4k_bT\mu}$
- Pour l'accélération:

$$a_{n,rms} = \sqrt{\frac{4k_b T\omega_0}{mQ}}$$

• $f_0=23.7$ kHz, m=2.2e-10 kg, Q=5: $a_{n,rms}=4.8e-3$ m/s² ou 0.5mg/Hz^{1/2}

Principe du capteur inertiel

- Il s'agit donc de mesurer le déplacement !
- Lien entre le déplacement et l'accélération ? La loi de Newton écrite dans le repère lié au support de la masse mobile (x sur le transp. précédent)

$$-kx - \mu \dot{x} + F = m\ddot{x}$$
, où $F = -ma_{ext}$ ou $F = mg$

• Dans le domaine de Laplace:

$$\frac{x(p)}{F(p)} = \frac{1}{k + \mu p + mp^2},$$

Principe du capteur inertiel

• Schéma en boucle ouverte :

• Schéma en boucle fermée :

Mesure de la position

• Choix du transducteur capacitif : c(x) est linéaire/non-linéaire

• Choix de la mesure différentielle/unipolaire

Principe du capteur inertiel

- Conversion « position-tension » : capacitive ou piézoélectrique
- Nombreuses techniques de mesure de la capacité cf. plus loin
- Boucle ouverte ou boucle fermée ? Boucle fermée !
 Pourquoi ?
 - Tous les bienfaits de systèmes en boucle fermée amélioration de la linéarité, de la bande passante, de la stabilité
 - Système plus complexe, car nécessite une transduction « tension-force », mais naturellement faisable avec MEMS.

Mesure de la position

• Choix de la mesure différentielle/unipolaire

• Technique de la mesure de la capacité ?

11

Mesure de la position

• Mesure de capacité « unipolaire » : amplificateur de transimpédance

• On mesure la vitesse et non pas la position si Vs est une source DC!

Mesure de la position

• Mesure de capacité « unipolaire » : amplificateur de transimpédance

- ICI, VS est AC, on mesure la position !
- À quoi sert la résistance R_F?

Mesure de la position

• Mesure de capacité « unipolaire » : capacités commutées

- Φ_1, Φ_2 : les horloges en opposition de phase
- Mesure directe de la capacité ! Insensible à la capacité parasite

Mesure de la position

• Mesure de capacité « unipolaire » : détection synchrone

- L'avantage : récupération du signal à basse fréquence, très fiable
- L'inconvénient : nécessite un filtre analogique

14

13

15

Mesure de la position

• Mesure de capacité « différentielle » : principe

Mesure de position

Mesure différentielle

 sortie unipolaire

• Mesure différentielle – sortie différentielle

$ a_{ext} $
$\vec{X} = \vec{Y} - \vec{Z}$
$C_{s2}=0.5(C_{s}-\Delta C_{s})$
$C_{R1}=0.5(C_{S}-\Delta C_{S})$

Mesure de la position

• Exemple d'un circuit complet pour une configuration différentielle (PhD de A. Babak)

Mesure de la position: conclusion

- Mesure différentielle offre davantage de souplesse pour réaliser les circuits électroniques
- Les capacités commutées ou une détection synchrone sont des techniques utilisées pour mesurer une capacité

Fonctionnement en boucle fermée

- L'avantage ? Le transducteur reçoit uniquement l'erreur de trainage, 1-2 ordres de grandeur plus faible que la force d'entrée :
 - Non-linéarité !
 - Rapidité (bande passante élargie) !

Fonctionnement en boucle fermée

• Contre-réaction un actionnement capacitif !

Fonctionnement en boucle fermée

- L'objectif : maintenir le transducteur près de la position d'équilibre
- Architecture Sigma-Delta !

Fonctionnement en boucle fermée

- Pourquoi sigma-delta?
- La force de retour est quadratique en fonc. de U
- Donc, difficile à réaliser quand le système est analogique

Sigma-Delta: le retour est « bang-bang », +1 ou -1 En plus, une conversion analogique-numérique !

Bibliographie

- S. D. Senturia, Microsystem Design, 2001
- Ayman Ismail, **Designing closed-loop MEMS-based capacitive** inertial sensors, **MEMS technologies**, Electronic Engineering Times Europe March 2013
- Thèse de doctorat de A. Babak, A Mixed-Signal Low-Noise Sigma-Delta Interface IC for Integrated Sub-Micro-Gravity Capacitive SOI Accelerometers, 2006
- M. Kraft et al., Closed Loop Micromachined Inertial Sensors with Higher Order SD-Modulators, 2001 International Conference on Modeling and Simulation of Microsystems
- Yin Liang et al., **High resolution interface circuit for closed-loop** accelerometer, Journal of Semiconductors, 2011

25

 Mark A. Lemkin et al., A 3-Axis Surface Micromachined ΣΔ Accelerometer, ISSCC 1997